For a general class of semilinear equations Deltau - F(x, u) = 0 in a Lipschitz domain Omega subset of M, where M is a smooth compact Riemannian manifold, we establish the existence and uniqueness of solutions to Dirichlet and Neumann boundary problems. The main contribution of this paper is that we consider 'rough' boundary data that are typically just L-p(partial derivativeOmega) functions. Results of this type for the linear equation are typically obtained using singular integral techniques.
机构:
Univ Pisa, Dipartimento Matemat Applicata U Dini, I-56100 Pisa, ItalyUniv Pisa, Dipartimento Matemat Applicata U Dini, I-56100 Pisa, Italy
Micheletti, Anna Maria
Pistoia, Angela
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat, Via Antonio Scarpa 16, I-00161 Rome, ItalyUniv Pisa, Dipartimento Matemat Applicata U Dini, I-56100 Pisa, Italy
机构:
Yokohama Natl Univ, Fac Engn, Dept Math, Hodogaya Ku, Yokohama, Kanagawa, JapanYokohama Natl Univ, Fac Engn, Dept Math, Hodogaya Ku, Yokohama, Kanagawa, Japan