FPGA Implementation of one-dimensional and two-dimensional cellular automata

被引:2
|
作者
D'Antone, I [1 ]
机构
[1] Ist Nazl Fis Nucl, I-40127 Bologna, Italy
关键词
cellular automate; FPGA; VLSI; self-testing; peak finding;
D O I
10.1016/S0168-9002(99)00171-0
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This report describes the hardware implementation of one-dimensional and two-dimensional cellular automata (CAs). After a general introduction to the cellular automata, we consider a one-dimensional CA used to implement pseudo-random techniques in built-in self test for VLSI. Due to the increase in digital ASIC complexity, testing is becoming one of the major costs in the VLSI production. The high electronics complexity, used in particle physics experiments, demands higher reliability than in the past time. General criterions are given to evaluate the feasibility of the circuit used for testing and some quantitative parameters are underlined to optimize the architecture of the cellular automaton. Furthermore, we propose a two-dimensional CA that performs a peak finding algorithm in a matrix of cells mapping a sub-region of a calorimeter. As in a two-dimensional filtering process, the peaks of the energy clusters are found in one evolution step. This CA belongs to Wolfram class II cellular automata. Some quantitative parameters are given to optimize the architecture of the cellular automaton implemented in a commercial field programmable gate array (FPGA). (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:127 / 142
页数:16
相关论文
共 50 条
  • [1] From One-dimensional to Two-dimensional Cellular Automata
    Dennunzio, Alberto
    [J]. FUNDAMENTA INFORMATICAE, 2012, 115 (01) : 87 - 105
  • [2] TWO-DIMENSIONAL CELLULAR AUTOMATA
    PACKARD, NH
    WOLFRAM, S
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1985, 38 (5-6) : 901 - 946
  • [3] Replication in one-dimensional cellular automata
    Gravner, Janko
    Gliner, Genna
    Pelfrey, Mason
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (18) : 1460 - 1474
  • [4] DETERMINISTIC ONE-DIMENSIONAL CELLULAR AUTOMATA
    PITSIANIS, N
    TSALIDES, P
    BLERIS, GL
    THANAILAKIS, A
    CARD, HC
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1989, 56 (1-2) : 99 - 112
  • [5] Computations on one-dimensional cellular automata
    Mazoyer, J
    [J]. ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 1996, 16 (1-4) : 285 - 309
  • [6] Signals in one-dimensional cellular automata
    Mazoyer, J
    Terrier, V
    [J]. THEORETICAL COMPUTER SCIENCE, 1999, 217 (01) : 53 - 80
  • [7] One-Dimensional Quantum Cellular Automata
    Arrighi, Pablo
    Nesme, Vincent
    Werner, Reinhard
    [J]. INTERNATIONAL JOURNAL OF UNCONVENTIONAL COMPUTING, 2011, 7 (04) : 223 - 244
  • [8] APERIODICITY IN ONE-DIMENSIONAL CELLULAR AUTOMATA
    JEN, E
    [J]. PHYSICA D, 1990, 45 (1-3): : 3 - 18
  • [9] ON ERGODIC ONE-DIMENSIONAL CELLULAR AUTOMATA
    SHIRVANI, M
    ROGERS, TD
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 136 (03) : 599 - 605
  • [10] Bitwise implementation of a two-dimensional cellular automata biofilm model
    Pizarro, GE
    Teixeira, J
    Sepúlveda, M
    Noguera, DR
    [J]. JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2005, 19 (03) : 258 - 268