On-line Adaptive Interval Type-2 Fuzzy Controller Design via Stable SPSA Learning Mechanism

被引:0
|
作者
Lee, Ching-Hung [1 ]
Chang, Feng-Yu [2 ]
Lin, Chih-Min [2 ]
机构
[1] Natl Chung Hsing Univ, Dept Mech Engn, Taichung 402, Taiwan
[2] Yuan Ze Univ, Dept Elect Engn, Tao Yuan 320, Taiwan
关键词
interval type-2 fuzzy neural system; uncertainty bounds; simultaneous perturbation stochastic approximation algorithm; Lyapunov theorem; on-line control; CONTROL-SYSTEM; IDENTIFICATION; ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes an interval type-2 Takagi-Sugeno-Kang fuzzy neural system (IT2TFNS) to develop an on-line adaptive controller using stable simultaneous perturbation stochastic approximation (SPSA) algorithm. The proposed IT2TFNS realizes an interval type-2 TSK fuzzy logic system formed by the neural network structure. Differ from the most of interval type-2 fuzzy systems, the type-reduction of the proposed IT2TFNS is embedded in the network by using uncertainty bounds method such that the time-consuming Karnik-Mendel (KM) algorithm is replaced. The proposed stable SPSA algorithm provides the gradient free property and faster convergence. However, the stable SPSA algorithm inherently has the problem for on-line adaptive control. Hence, in order to achieve the on-line result, we utilize the sliding surface to develop a new on-line adaptive control scheme. In addition, the corresponding stable learning is derived by Lyapunov theorem which guarantees the convergence and stability of the closed-loop systems. Simulation and comparison results are shown to demonstrate the performance and effectiveness of our approach.
引用
收藏
页码:489 / 500
页数:12
相关论文
共 50 条
  • [1] On-line learning rules for type-2 fuzzy controller
    Wan, Tan Woei
    Kamal, Danesh Hasan
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2006, : 513 - +
  • [2] Design of interval type-2 fuzzy logic controller
    Hsiao, Ming-Ying
    Li, Tzuu-Hseng S.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 4976 - +
  • [3] Interval type-2 fuzzy logic controller design for TCSC
    Panda M.K.
    Pillai G.N.
    Kumar V.
    [J]. Evolving Systems, 2014, 5 (03) : 193 - 208
  • [4] Systematic design of a stable type-2 fuzzy logic controller
    Castillo, Oscar
    Aguilar, Luis
    Cazarez, Nohe
    Cardenas, Selene
    [J]. APPLIED SOFT COMPUTING, 2008, 8 (03) : 1274 - 1279
  • [5] Systematic design of a stable type-2 fuzzy logic controller
    Castillo, Oscar
    Aguilar, Luis
    Cazarez, Nohe
    Melin, Patricia
    [J]. FORGING NEW FRONTIERS: FUZZY PIONEERS II, 2008, 218 : 319 - 331
  • [6] Practical implementation for stable adaptive interval A2-C0 type-2 TSK fuzzy controller
    El-Nagar, Ahmad M.
    [J]. SOFT COMPUTING, 2019, 23 (19) : 9585 - 9603
  • [7] Practical implementation for stable adaptive interval A2-C0 type-2 TSK fuzzy controller
    Ahmad M. El-Nagar
    [J]. Soft Computing, 2019, 23 : 9585 - 9603
  • [8] An inverse controller design method for interval type-2 fuzzy models
    Kumbasar, Tufan
    Eksin, Ibrahim
    Guzelkaya, Mujde
    Yesil, Engin
    [J]. SOFT COMPUTING, 2017, 21 (10) : 2665 - 2686
  • [9] Design of interval type-2 fuzzy sliding-mode controller
    Hsiao, Ming-Ying
    Li, Tzuu-Hseng S.
    Lee, J. -Z.
    Chao, C. -H.
    Tsai, S. -H.
    [J]. INFORMATION SCIENCES, 2008, 178 (06) : 1696 - 1716
  • [10] An inverse controller design method for interval type-2 fuzzy models
    Tufan Kumbasar
    Ibrahim Eksin
    Mujde Guzelkaya
    Engin Yesil
    [J]. Soft Computing, 2017, 21 : 2665 - 2686