Divergence-Free Wavelets and High Order Regularization

被引:36
|
作者
Kadri-Harouna, S. [1 ]
Derian, P. [1 ]
Heas, P. [1 ]
Memin, E. [1 ]
机构
[1] INRIA Rennes Bretagne Atlantique, F-35042 Rennes, France
关键词
Divergence-free wavelets; High order derivatives regularization; Optic-flow estimation; FLUID-FLOW;
D O I
10.1007/s11263-012-0595-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Expanding on a wavelet basis the solution of an inverse problem provides several advantages. First of all, wavelet bases yield a natural and efficient multiresolution analysis which allows defining clear optimization strategies on nested subspaces of the solution space. Besides, the continuous representation of the solution with wavelets enables analytical calculation of regularization integrals over the spatial domain. By choosing differentiable wavelets, accurate high-order derivative regularizers can be efficiently designed via the basis's mass and stiffness matrices. More importantly, differential constraints on vector solutions, such as the divergence-free constraint in physics, can be nicely handled with biorthogonal wavelet bases. This paper illustrates these advantages in the particular case of fluid flow motion estimation. Numerical results on synthetic and real images of incompressible turbulence show that divergence-free wavelets and high-order regularizers are particularly relevant in this context.
引用
收藏
页码:80 / 99
页数:20
相关论文
共 50 条
  • [1] Divergence-Free Wavelets and High Order Regularization
    S. Kadri-Harouna
    P. Dérian
    P. Héas
    E. Mémin
    [J]. International Journal of Computer Vision, 2013, 103 : 80 - 99
  • [2] On interpolatory divergence-free wavelets
    Bittner, Kai
    Urban, Karsten
    [J]. MATHEMATICS OF COMPUTATION, 2007, 76 (258) : 903 - 929
  • [3] DIVERGENCE-FREE VECTOR WAVELETS
    LEMARIERIEUSSET, PG
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (05): : 213 - 216
  • [4] DIVERGENCE-FREE VECTOR WAVELETS
    BATTLE, G
    FEDERBUSH, P
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 1993, 40 (01) : 181 - 195
  • [5] Multiwavelets on the interval and divergence-free wavelets
    Lakey, J
    Pereyra, MC
    [J]. WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VII, 1999, 3813 : 162 - 173
  • [6] Effective construction of divergence-free wavelets on the square
    Harouna, S. Kadri
    Perrier, V.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 240 : 74 - 86
  • [7] A NONEXISTENCE THEOREM FOR DIVERGENCE-FREE VECTOR WAVELETS
    LEMARIERIEUSSET, PG
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (08): : 811 - 813
  • [8] Divergence-Free Wavelets on the Hypercube: General Boundary Conditions
    Rob Stevenson
    [J]. Constructive Approximation, 2016, 44 : 233 - 267
  • [9] Divergence-Free Wavelets on the Hypercube: General Boundary Conditions
    Stevenson, Rob
    [J]. CONSTRUCTIVE APPROXIMATION, 2016, 44 (02) : 233 - 267
  • [10] Basis for high order divergence-free finite element spaces
    Rodriguez, A. Alonso
    Camano, J.
    De Los Santos, E.
    Rapetti, F.
    [J]. RESULTS IN APPLIED MATHEMATICS, 2024, 23