A framework for particle filtering in positioning, navigation and tracking problems

被引:0
|
作者
Gustafsson, F [1 ]
Gunnarsson, F [1 ]
Bergman, N [1 ]
Forssell, U [1 ]
Jansson, J [1 ]
Nordlund, PJ [1 ]
Karlsson, R [1 ]
机构
[1] Linkoping Univ, Dept Elect Engn, SE-58183 Linkoping, Sweden
关键词
D O I
10.1109/SSP.2001.955215
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A framework for positioning, navigation and tracking problems using particle filters (recursive Monte Carlo methods) is developed. Automotive and airborn applications, approached in this framework, have proven a numerical advantage over classical Kalman filter based algorithms. Here the use of non-linear measurement models and non-Gaussian measurement noise is the main explanation for the improvement in accuracy, and models for relevant sensors are surveyed.
引用
收藏
页码:34 / 37
页数:4
相关论文
共 50 条
  • [1] Particle filters for positioning, navigation, and tracking
    Gustafsson, F
    Gunnarsson, F
    Bergman, N
    Forssell, U
    Jansson, J
    Karlsson, R
    Nordlund, PJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 425 - 437
  • [2] Terrain Navigation in the Magnetic Landscape: Particle Filtering for Indoor Positioning
    Solin, Arno
    Sarkka, Simo
    Kannala, Juho
    Rahtu, Esa
    2016 EUROPEAN NAVIGATION CONFERENCE (ENC), 2016,
  • [3] Adaptive multifeature tracking in a particle filtering framework
    Maggio, Emilio
    Smeraldi, Fabrizio
    Cavallaro, Andrea
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2007, 17 (10) : 1348 - 1359
  • [4] A hybrid tracking framework based on kernel correlation filtering and particle filtering
    Zhao, Zhiqiang
    Feng, Ping
    Guo, Jingjuan
    Yuan, Caihong
    Wang, Tianjiang
    Liu, Fang
    Zhao, Zhijian
    Cui, Zongmin
    Wu, Bin
    NEUROCOMPUTING, 2018, 297 : 40 - 49
  • [5] Tracking with a new distribution metric in a particle filtering framework
    Sandhu, Romeil
    Georgiou, Tryphon
    Tannenbaum, Allen
    IMAGE PROCESSING: MACHINE VISION APPLICATIONS, 2008, 6813
  • [6] A particle filtering framework with indirect measurements for visual tracking
    Zhang, HH
    Huang, WM
    Huang, ZY
    Zhang, BL
    2004 8TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1-3, 2004, : 723 - 728
  • [7] A Robust Single GPS Navigation and Positioning Algorithm Based on Strong Tracking Filtering
    Xiong, Hailiang
    Tang, Juan
    Xu, Hongji
    Zhang, Wensheng
    Du, Zhengfeng
    IEEE SENSORS JOURNAL, 2018, 18 (01) : 290 - 298
  • [8] Fingertip Positioning and Tracking by Fusing Multiple Cues Using Particle Filtering
    Liang, Sheng-Ming
    Huang, Shih-Shinh
    2013 IEEE 17TH INTERNATIONAL SYMPOSIUM ON CONSUMER ELECTRONICS (ISCE), 2013, : 205 - 206
  • [9] A Particle Filtering Framework for Joint Video Tracking and Pose Estimation
    Chen, Chong
    Schonfeld, Dan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (06) : 1625 - 1634
  • [10] Feature integration for adaptive visual tracking in a particle filtering framework
    Komeili, M.
    Armanfard, N.
    Valizadeh, M.
    Kabir, E.
    2009 14TH INTERNATIONAL COMPUTER CONFERENCE, 2009, : 115 - 120