A semi-analytical finite element formulation for modeling stress wave propagation in axisymmetric damped waveguides

被引:154
|
作者
Marzani, Alessandro [1 ]
Viola, Erasmo [1 ]
Bartoli, Ivan [2 ,4 ]
di Scalea, Francesco Lanza [2 ,4 ]
Rizzo, Plervincenzo [3 ]
机构
[1] Univ Bologna, DISTART, I-40136 Bologna, Italy
[2] Univ Calif San Diego, Dept Struct Engn, NDE, La Jolla, CA 92093 USA
[3] Univ Pittsburgh, Dept Civil & Environm Engn, Pittsburgh, PA 15261 USA
[4] Univ Calif San Diego, Struct Hlth Monitoring Lab, Dept Struct Engn, La Jolla, CA 92093 USA
关键词
D O I
10.1016/j.jsv.2008.04.028
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A semi-analytical finite element (SAFE) method is presented for analyzing the wave propagation in viscoelastic axisymmetric waveguides. The approach extends a recent study presented by the authors, in which the general SAFE method was extended to account for material damping. The formulation presented in this paper uses the cylindrical coordinates to reduce the finite element discretization over the waveguide cross-section to a mono-dimensional mesh. The algorithm is validated by comparing the dispersion results with viscoelastic cases for which a Superposition of Partial Bulk Waves solution is known. The formulation accurately predicts dispersion properties and does not show any missing root. Applications to viscoelastic axisymmetric waveguides with varying mechanical and geometrical properties are presented. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:488 / 505
页数:18
相关论文
共 50 条
  • [1] Semi-analytical finite element method for modeling of lamb wave propagation
    Z. A. B. Ahmad
    J. M. Vivar-Perez
    U. Gabbert
    CEAS Aeronautical Journal, 2013, 4 (1) : 21 - 33
  • [2] Improved semi-analytical finite element modeling of axisymmetric guided wave modes in composite pipes
    Hu, Jian-Hong
    Tang, Zhi-Feng
    Lv, Fu-Zai
    Pan, Xiao-Hong
    Han, Ye
    Jiang, Xiao-Yong
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2015, 49 (01): : 116 - 122
  • [3] A semi-analytical wavelet finite element method for wave propagation in rectangular rods
    Ding, Wenxiang
    Li, Liangtian
    Zhong, Hongmei
    Li, Ying
    Bao, Danyang
    Wei, Sheng
    Wang, Wenbin
    WAVE MOTION, 2024, 128
  • [4] Acoustic wave propagation in oil wells: A comparison between semi-analytical and finite element modeling approaches
    de Souza, Luis Paulo Brasil
    Hidalgo, Juan Andres Santisteban
    Correia, Tiago de Magalhaes
    Camerini, Isabel Giron
    Ferreira, Guilherme Rezende Bessa
    Rodrigues, Antonio de Souza
    Kubrusly, Alan Conci
    Braga, Arthur Martins Barbosa
    WAVE MOTION, 2025, 134
  • [5] Finite-element and semi-analytical study of elastic wave propagation in strongly scattering polycrystals
    Huang, Ming
    Huthwaite, Peter
    Rokhlin, Stanislav, I
    Lowe, Michael J. S.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2258):
  • [6] Numerical Analysis of Leaky Lamb Wave Propagation Using a Semi-Analytical Finite Element Method
    Hayashi, Takahiro
    Inoue, Daisuke
    41ST ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOL 34, 2015, 1650 : 695 - 702
  • [7] Development of a semi-analytical nonlinear finite element formulation for cylindrical shells
    Alijani, A.
    Darvizeh, M.
    Darvizeh, A.
    Ansari, R.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2014, 228 (02) : 199 - 217
  • [8] A semi-analytical coupled finite element formulation for shells conveying fluids
    Kochupillai, J
    Ganesan, N
    Padmanabhan, C
    COMPUTERS & STRUCTURES, 2002, 80 (3-4) : 271 - 286
  • [9] Semi-analytical finite element analysis of elastic waveguides subjected to axial loads
    Loveday, Philip W.
    ULTRASONICS, 2009, 49 (03) : 298 - 300
  • [10] Modelling piezoelectric excitation in waveguides using the semi-analytical finite element method
    Kalkowski, Michal K.
    Rustighi, Emiliano
    Waters, Timothy P.
    COMPUTERS & STRUCTURES, 2016, 173 : 174 - 186