Global attractors and convergence to equilibrium for degenerate Ginzburg-Landau and parabolic equations

被引:14
|
作者
Karachalios, Nikos I. [1 ]
Zographopoulos, Nikos B. [2 ]
机构
[1] Univ Aegean, Dept Math, GR-83200 Karlovassi, Samos, Greece
[2] Univ Crete, Dept Math, Iraklion 71409, Greece
关键词
Degenerate parabolic equation; Ginzburg-Landau equation; Global attractor; Global bifurcation; Convergence to equilibrium; Generalized Sobolev spaces;
D O I
10.1016/j.na.2005.03.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the dynamics of a degenerate complex Ginzburg-Landau (CGL), and a real parabolic equation with a variable, generally nonsmooth diffusion coefficient, which may vanish at some points or be unbounded. For the CGL equation, there exists a global attractor in L-2(Omega). For the parabolic equation, we show the existence of a global branch of nonnegative stationary states. The global bifurcation result, is used in order to establish-in conjunction with the definition of a gradient dynamical system in the natural phase space-that any solution with nonnegative initial data, tends to the trivial or the nonnegative equilibrium. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:E1749 / E1768
页数:20
相关论文
共 50 条