The effect of stacking fault energy on equilibrium grain size and tensile properties of nanostructured copper and copper-aluminum alloys processed by equal channel angular pressing

被引:86
|
作者
Huang, C. X. [1 ,2 ]
Hu, W. [2 ]
Yang, G. [3 ]
Zhang, Z. F. [4 ]
Wu, S. D. [4 ]
Wang, Q. Y. [1 ]
Gottstein, G. [2 ]
机构
[1] Sichuan Univ, Dept Mech, Chengdu 610065, Peoples R China
[2] Rhein Westfal TH Aachen, Inst Phys Met & Met Phys, D-52056 Aachen, Germany
[3] Cent Iron & Steel Res Inst, Beijing 100081, Peoples R China
[4] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
ECAP; Cu-Al alloy; Stacking fault energy; Nanostructure; Strength and ductility; CU-AL ALLOYS; MICROSTRUCTURAL CHARACTERISTICS; DEFORMATION-BEHAVIOR; PLASTIC-DEFORMATION; MECHANICAL-BEHAVIOR; SHEAR BANDS; EVOLUTION; TEMPERATURE; STRENGTH; DEPENDENCE;
D O I
10.1016/j.msea.2012.07.041
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Pure copper and copper-aluminum alloys (aluminum content of 2.3 at%, 7.2 at%, and 11.6 at% with stacking fault energies (SFEs) of about 48 mJ/m(2), 21 mJ/m(2), and 8 mJ/m(2), respectively) were processed by equal channel angular pressing (ECAP) at room temperature for 8 passes to generate a nanoscale grain size. The effect of SFE on microstructure refinement and tensile properties of these materials were investigated. Microstructural observations indicated that the grain size of as-ECAPed alloy decreased monotonically with increasing Al concentration, i.e. with decreasing SFE. A very low SFE was especially favorable for achieving a true nanocrystalline structure (e.g. d approximate to 57 nm in Cu-11.6 at% Al) by twinning and shear banding. The tensile strength and uniform elongation of nanostructured copper-aluminum alloys were simultaneously enhanced owing to the significant grain size refinement, solid solution strengthening and enhanced strain hardening capability. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:638 / 647
页数:10
相关论文
共 50 条
  • [1] Grain size distribution and heat conductivity of copper processed by equal channel angular pressing
    Gendelman, O. V.
    Shapiro, M.
    Estrin, Y.
    Hellmig, R. J.
    Lekhtmakher, S.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 434 (1-2): : 88 - 94
  • [2] Grain refinement of copper alloys by equal channel angular pressing
    Lim, CY
    Jung, JH
    Han, SZ
    DESIGNING, PROCESSING AND PROPERTIES OF ADVANCED ENGINEERING MATERIALS, PTS 1 AND 2, 2004, 449-4 : 177 - 180
  • [3] STACKING-FAULT ENERGY OF TERNARY COPPER-ALUMINUM ALLOYS
    LUSHANKIN, IA
    MARTYNOV, VV
    KHANDROS, LG
    FIZIKA METALLOV I METALLOVEDENIE, 1986, 62 (02): : 338 - 343
  • [4] Segmentation of copper alloys processed by equal-channel angular pressing
    Nejadseyfi, Omid
    Shokuhfar, Ali
    Moodi, Vahid
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2015, 25 (08) : 2571 - 2580
  • [5] Microstructure and tensile properties of ultrafine grained copper processed by equal-channel angular pressing
    Wei Wei
    Chen Guang
    Wang Jingtao
    Chen Guoliang
    RARE METALS, 2006, 25 (06) : 697 - 703
  • [7] Mechanical properties of copper processed by Equal Channel Angular Pressing - a review
    Kunz, Ludvik
    Collini, Luca
    FRATTURA ED INTEGRITA STRUTTURALE, 2012, (19): : 61 - 75
  • [8] MEASUREMENT OF STACKING-FAULT ENERGY OF BINARY AND TERNARY COPPER-ALUMINUM ALLOYS
    BARNOIN, JJ
    JOURNAL DE MICROSCOPIE, 1972, 14 (02): : A3 - +
  • [9] Microstructures of Aluminum and Copper Single Crystals Processed by Equal-Channel Angular Pressing
    Furukawa, Minoru
    Horita, Zenji
    Langdon, Terence G.
    THERMEC 2009, PTS 1-4, 2010, 638-642 : 1946 - +
  • [10] Equal-channel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability and tensile properties
    Zenji Horita
    Takayoshi Fujinami
    Minoru Nemoto
    Terence G. Langdon
    Metallurgical and Materials Transactions A, 2000, 31 : 691 - 701