Meta-analysis of gene expression studies in endometrial cancer identifies gene expression profiles associated with aggressive disease and patient outcome

被引:31
|
作者
O'Mara, Tracy A. [1 ]
Zhao, Min [2 ]
Spurdle, Amanda B. [1 ]
机构
[1] QIMR Berghofer Med Res Inst, Genet & Computat Biol Dept, Herston, Qld 4006, Australia
[2] Univ Sunshine Coast, Fac Sci Hlth Educ & Engn, Sch Engn, Sippy Downs, Qld 4558, Australia
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
澳大利亚国家健康与医学研究理事会; 英国医学研究理事会;
关键词
DIFFERENT HISTOLOGIC TYPES; MICROARRAY ANALYSIS; TUMOR PROGRESSION; BREAST-CANCER; CELLS; CARCINOMAS; BIOMARKERS; RECEPTORS; PREDICTS; SURVIVAL;
D O I
10.1038/srep36677
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although endometrioid endometrial cancer (EEC; comprising similar to 80% of all endometrial cancers diagnosed) is typically associated with favourable patient outcome, a significant portion (similar to 20%) of women with this subtype will relapse. We hypothesised that gene expression predictors of the more aggressive non-endometrioid endometrial cancers (NEEC) could be used to predict EEC patients with poor prognosis. To explore this hypothesis, we performed meta-analysis of 12 gene expression microarray studies followed by validation using RNA-Seq data from The Cancer Genome Atlas (TCGA) and identified 1,253 genes differentially expressed between EEC and NEEC. Analysis found 121 genes were associated with poor outcome among EEC patients. Forward selection likelihood-based modelling identified a 9-gene signature associated with EEC outcome in our discovery RNA-Seq dataset which remained significant after adjustment for clinical covariates, but was not significant in a smaller RNA-Seq dataset. Our study demonstrates the value of employing meta-analysis to improve the power of gene expression microarray data, and highlight genes and molecular pathways of importance for endometrial cancer therapy.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Meta-analysis of gene expression studies in endometrial cancer identifies gene expression profiles associated with aggressive disease and patient outcome
    Tracy A. O’Mara
    Min Zhao
    Amanda B. Spurdle
    Scientific Reports, 6
  • [2] Meta-analysis of gene expression profiles in preeclampsia
    Vennou, Konstantina E.
    Kontou, Panagiota, I
    Braliou, Georgia G.
    Bagos, Pantelis G.
    PREGNANCY HYPERTENSION-AN INTERNATIONAL JOURNAL OF WOMENS CARDIOVASCULAR HEALTH, 2020, 19 : 52 - 60
  • [3] Meta-analysis of gene expression profiles identifies differential biomarkers for hepatocellular carcinoma and cholangiocarcinoma
    Likhitrattanapisal, Somsak
    Tipanee, Jaitip
    Janvilisri, Tavan
    TUMOR BIOLOGY, 2016, 37 (09) : 12755 - 12766
  • [4] Gene expression profiles identify an aggressive phenotype in endometrial carcinoma
    Salvesen, Helga B.
    Bo, Trond H.
    Stefansson, Ingunn M.
    Mannelqvist, Monica
    Bredholt, Geir
    Engelsen, Ingeborg B.
    Oyan, Anne M.
    Jonassen, Inge
    Kalland, Karl Henning
    Akslen, Lars A.
    CANCER RESEARCH, 2006, 66 (08)
  • [5] Meta-analysis of Gene Expression Data Identifies Causal Genes for Prostate Cancer
    Wang, Xiang-Yang
    Hao, Jian-Wei
    Zhou, Rui-Jin
    Zhang, Xiang-Sheng
    Yan, Tian-Zhong
    Ding, De-Gang
    Shan, Lei
    ASIAN PACIFIC JOURNAL OF CANCER PREVENTION, 2013, 14 (01) : 457 - 461
  • [6] A review and meta-analysis of gene expression profiles in suicide
    Piras, Ignazio S.
    Huentelman, Matthew J.
    Pinna, Federica
    Paribello, Pasquale
    Solmi, Marco
    Murru, Andrea
    Carpiniello, Bernardo
    Manchia, Mirko
    Zai, Clement C.
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2022, 56 : 39 - 49
  • [7] Meta-analysis of colorectal cancer gene expression profiling studies identifies consistently reported candidate biomarkers
    Chan, Simon K.
    Griffith, Obi L.
    Tai, Isabella T.
    Jones, Steven J. M.
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2008, 17 (03) : 543 - 552
  • [8] Meta-analysis of age-related gene expression profiles identifies common signatures of aging
    de Magalhaes, Joao Pedro
    Curado, Joao
    Church, George M.
    BIOINFORMATICS, 2009, 25 (07) : 875 - 881
  • [9] Analysis of microRNA and Gene Expression Profiles in Alzheimer's Disease: A Meta-Analysis Approach
    Moradifard, Shirin
    Hoseinbeyki, Moslem
    Ganji, Shahla Mohammad
    Minuchehr, Zarrin
    SCIENTIFIC REPORTS, 2018, 8
  • [10] Gene Expression Profiles of Meningiomas are Associated with Tumor Cytogenetics and Patient Outcome
    Dolores Tabernero, Maria
    Maillo, Angel
    Gil-Bellosta, Carlos J.
    Castrillo, Abel
    Sousa, Pablo
    Merino, Marta
    Orfao, Alberto
    BRAIN PATHOLOGY, 2009, 19 (03) : 409 - 420