Automatic crack monitoring using photogrammetry and image processing

被引:99
|
作者
Valenca, J. [1 ,4 ]
Dias-da-Costa, D. [2 ,5 ]
Julio, E. [1 ,6 ]
Araujo, H. [3 ]
Costa, H. [1 ,4 ]
机构
[1] ICIST, P-1049001 Lisbon, Portugal
[2] INESC, P-3000033 Coimbra, Portugal
[3] Univ Coimbra, Dept Elect & Comp Engn, ISR, P-3030290 Coimbra, Portugal
[4] Inst Polytech Coimbra, Dept Civil Engn, P-3030199 Coimbra, Portugal
[5] Univ Coimbra, Dept Civil Engn, P-3030788 Coimbra, Portugal
[6] Univ Tecn Lisboa, Inst Super Tecn, Dept Civil Engn, P-1049001 Lisbon, Portugal
关键词
Laboratorial tests; Crack monitoring; Crack characterisation; Image processing; Photogrammetry; Monitoring;
D O I
10.1016/j.measurement.2012.07.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This manuscript presents an integrated approach for automatic crack monitoring combining photogrammetry and image processing. In summary, the strain field obtained from photogrammetric data is used to map the cracked areas where image processing is applied. All processing is completely automatic since only a threshold value, related to the width of the crack, needs to be provided. Direct Shear Tests (DSTs) have been selected for calibration, validation and also as an experimental example. In conclusion, critical areas, the corresponding crack pattern and all related measures (e.g. crack width, length, area or path) could be provided for any stage of loading, until the complete failure of the specimens. Furthermore, all outputs require low computational cost, thus allowing monitoring vast campaigns of laboratorial tests. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:433 / 441
页数:9
相关论文
共 50 条
  • [1] Photogrammetry and image processing techniques for beach monitoring
    Sanchez-Garcia, Elena
    REVISTA DE TELEDETECCION, 2020, (56): : 175 - 180
  • [2] Automatic quantification of crack patterns by image processing
    Liu, Chun
    Tang, Chao-Sheng
    Shi, Bin
    Suo, Wen-Bin
    COMPUTERS & GEOSCIENCES, 2013, 57 (57) : 77 - 80
  • [3] Concrete-crack monitoring using digital image processing techniques
    Avak, Ralf
    Schwuchow, Ronald
    Franz, Marcel
    BAUTECHNIK, 2007, 84 (06) : 403 - 408
  • [4] Automatic Crack Detection for Concrete Infrastructures Using Image Processing and Deep Learning
    Kim, Cuong Nguyen
    Kawamura, Kei
    Nakamura, Hideaki
    Tarighat, Amir
    2020 THE FIFTH INTERNATIONAL CONFERENCE ON BUILDING MATERIALS AND CONSTRUCTION (ICBMC 2020), 2020, 829
  • [5] Building crack monitoring based on digital image processing
    Xu, Yanyan
    Cai, Yanxia
    Li, Dandan
    Zhang, Tierui
    FRATTURA ED INTEGRITA STRUTTURALE, 2020, 14 (52): : 1 - 8
  • [6] Crack Detection Using Multiple Image Processing for Unmanned Aerial Monitoring of Concrete Structure
    Paglinawan, Arnold C.
    Cruz, Febus Reidj G.
    Casi, Nicko D.
    Ingatan, Paul Augustine B.
    Karganilla, Ariel Bastian C.
    Moster, Gio Vincent G.
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 2534 - 2538
  • [7] Automatic Crack Detection on Pressed Panels Using Camera Image Processing with Local Amplitude Mapping
    Lee, Chang Won
    Jung, Hwee Kwon
    Park, Gyuhae
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2016, 36 (06) : 451 - 459
  • [8] Improved digital photogrammetry technique for crack monitoring
    Nishiyama, Satoshi
    Minakata, Nao
    Kikuchi, Teruyuki
    Yano, Takao
    ADVANCED ENGINEERING INFORMATICS, 2015, 29 (04) : 851 - 858
  • [9] DIGITAL IMAGE-PROCESSING IN PHOTOGRAMMETRY
    BETHEL, DJ
    PHOTOGRAMMETRIC RECORD, 1990, 13 (76): : 493 - 504
  • [10] Fatigue crack monitoring using image correlation
    Lopez-Crespo, P.
    Shterenlikht, A.
    Patterson, E. A.
    Yates, J. R.
    Withers, P. J.
    ADVANCES IN FRACTURE AND DAMAGE MECHANICS VII, 2008, 385-387 : 341 - +