The Accuracy of Semi-Empirical Quantum Chemistry Methods on Soot Formation Simulation

被引:1
|
作者
Cong, Yang [1 ]
Zhai, Yu [1 ]
Chen, Xin [2 ]
Li, Hui [1 ]
机构
[1] Jilin Univ, Inst Theoret Chem, Coll Chem, 2519 Jiefang Rd, Changchun 130023, Peoples R China
[2] Inst Syst & Phys Biol, Shenzhen Bay Lab, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
soot; soot precursors; PAHs; molecular dynamics simulation; semi-empirical; DFT tight-binding; benchmark; MOLECULAR-ORBITAL THEORY; GENERALIZED GRADIENT APPROXIMATION; NONCOVALENT INTERACTIONS; DENSITY FUNCTIONALS; NDDO APPROXIMATIONS; BASIS-SETS; PARAMETERS; MECHANISM; KINETICS; GROWTH;
D O I
10.3390/ijms232113371
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Soot molecules are hazardous compounds threatening human health. Computational chemistry provides efficient tools for studying them. However, accurate quantum chemistry calculation is costly for the simulation of large-size soot molecules and high-throughput calculations. Semi-empirical (SE) quantum chemistry methods are optional choices for balancing computational costs. In this work, we validated the performances of several widely used SE methods in the description of soot formation. Our benchmark study focuses on, but is not limited to, the validation of the performances of SE methods on reactive and non-reactive MD trajectory calculations. We also examined the accuracy of SE methods of predicting soot precursor structures and energy profiles along intrinsic reaction coordinate(s) (IRC). Finally, we discussed the spin density predicted by SE methods. The SE methods validated include AM1, PM6, PM7, GFN2-xTB, DFTB2, with or without spin-polarization, and DFTB3. We found that the shape of MD trajectory profiles, the relative energy, and molecular structures predicted by SE methods are qualitatively correct. We suggest that SE methods can be used in massive reaction soot formation event sampling and primary reaction mechanism generation. Yet, they cannot be used to provide quantitatively accurate data, such as thermodynamic and reaction kinetics ones.
引用
收藏
页数:15
相关论文
共 50 条