Previously, a global self-consistent model of the thermosphere, ionosphere, and protonosphere (GSM TIP) was used to study the ionospheric effects of geomagnetic storms in 2005, 2006, 2010, and 2011. In these studies, the input parameters of the model were specified using different dependences of variations of the potential difference across the polar caps and of the spatial distribution of Region 2 field-aligned currents during geomagnetic storms on the geomagnetic activity indices, solar wind parameters, and interplanetary magnetic field parameters. In the present work, we have tried to examine how correct was the choice of these relationships and how faithful are the obtained global distributions of the electric field in the ionosphere. For this, we present the results of a comparative analysis of the electric field in the ionosphere during geomagnetic storms of May 2-3, 2010, obtained using two models (GSM TIP and LC06) based on different approaches to solving this problem.