An Implicit Iteration Process for Common Fixed Points of Two Infinite Families of Asymptotically Nonexpansive Mappings in Banach Spaces

被引:18
|
作者
Deng, Wei-Qi [1 ]
Bai, Peng [1 ]
机构
[1] Yunnan Univ Finance & Econ, Coll Stat & Math, Kunming 650221, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
STRONG-CONVERGENCE; FINITE FAMILY; WEAK;
D O I
10.1155/2013/602582
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a nonempty, closed, and convex subset of a real uniformly convex Banach space... Let {T-lambda}(lambda is an element of Lambda) and {S-lambda}(lambda is an element of Lambda) be two infinite families of asymptotically nonexpansive mappings from.. to itself with.. := {x is an element of K : T(lambda)x = x = S(lambda)x, lambda is an element of Lambda} not equal theta. For an arbitrary initial point x(0) is an element of K, {x(n)} is defined as follows: x(n) = alpha(n)x(n-1) + beta(n) (Tn-1*)(mn-1) gamma(n)(T-n*)(mn) y(n), y(n) = alpha(n)'x(n) + beta(n)' (Sn-1*)(mn-1)n =, 2, 3, ..., where T-n* = T-lambda in and S-n* = S-lambda in. with i(n) and m(n) satisfying the positive integer equation: n = i + (m - 1)m/2, m >= i; {T-lambda}(i=1)(infinity) and {S-lambda i}(i=1)(infinity) are two countable subsets of {alpha(n)} and {beta(n)} respectively; {alpha(n) }, {beta(n) }, {gamma(n)}, {alpha(n)'}, {beta(n)'}, and {gamma(n)'} are sequences in [delta, 1-delta] for some (0, 1), satisfying alpha(n) + beta(n) + gamma(n) = 1 and alpha(n)' + beta(n)' + gamma(n)' = 1. Under some suitable conditions, a strong convergence theorem for common fixed points of the mappings {T-lambda}(lambda is an element of Lambda) and {S-lambda}(lambda is an element of Lambda) is obtained. The results extend those of the authors whose related researches are restricted to the situation of finite families of asymptotically nonexpansive mappings.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] ON AN ITERATION PROCESS FOR COMMON FIXED POINTS OF NONSELF TOTAL ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN BANACH SPACES
    Khan, Safeer Hussain
    Kiziltunc, Hukmi
    Purtas, Yunus
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2015, 6 (01): : 235 - 248
  • [2] Implicit Iteration Process for Common Fixed Points of Strictly Asymptotically Pseudocontractive Mappings in Banach Spaces
    You Xian Tian
    Shih-sen Chang
    Jialin Huang
    Xiongrui Wang
    J. K. Kim
    [J]. Fixed Point Theory and Applications, 2008
  • [3] Implicit Iteration Process for Common Fixed Points of Strictly Asymptotically Pseudocontractive Mappings in Banach Spaces
    Tian, You Xian
    Chang, Shih-sen
    Huang, Jialin
    Wang, Xiongrui
    Kim, J. K.
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2008, 2008 (1)
  • [4] An iteration process for common fixed points of two nonself asymptotically nonexpansive mappings
    Akbulut, Sezgin
    Khan, Safeer Hussain
    Ozdemir, Murat
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2012, 20 (01): : 15 - 30
  • [5] AN ITERATION PROCESS FOR COMMON FIXED POINTS OF TWO NONSELF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS
    Khan, Safeer Hussain
    [J]. BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 3 (03): : 165 - 176
  • [6] STRONG CONVERGENCE OF AN IMPLICIT ITERATION PROCESS FOR TWO ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN BANACH SPACES
    Wang, Lin
    Yildirim, Isa
    Ozdemir, Murat
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2010, 18 (02): : 281 - 294
  • [7] IMPLICIT ITERATION PROCESS FOR COMMON FIXED POINTS OF AN INFINITE FAMILY OF STRICTLY PSEUDOCONTRACTIVE MAPPINGS IN BANACH SPACES
    Chang, Shih-Sen
    Cho, Yeol Je
    Kim, Jong Kyu
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 25 (04): : 571 - 581
  • [8] A new one-step implicit iterative process for common fixed points of two asymptotically nonexpansive mappings in Banach spaces
    Yildirim, Isa
    Khan, Safeer Hussain
    [J]. EXPOSITIONES MATHEMATICAE, 2011, 29 (02) : 240 - 251
  • [9] Hybrid iteration method for common fixed points of an infinite family of nonexpansive mappings in Banach spaces
    Deng, Wei-Qi
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2012, : 1 - 7
  • [10] Hybrid iteration method for common fixed points of an infinite family of nonexpansive mappings in Banach spaces
    Wei-Qi Deng
    [J]. Fixed Point Theory and Applications, 2012