Automatic Photo Orientation Detection with Convolutional Neural Networks

被引:14
|
作者
Joshi, Ujash [1 ]
Guerzhoy, Michael [1 ]
机构
[1] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
关键词
photo; image orientation; convolutional neural networks; guided backpropgation; visualizing convnets;
D O I
10.1109/CRV.2017.59
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We apply convolutional neural networks (CNN) to the problem of image orientation detection in the context of determining the correct orientation (from 0, 90, 180, and 270 degrees) of a consumer photo. The problem is especially important for digitazing analog photographs. We substantially improve on the published state of the art in terms of the performance on one of the standard datasets, and test our system on a more difficult large dataset of consumer photos. We use Guided Backpropagation to obtain insights into how our CNN detects photo orientation, and to explain its mistakes.
引用
收藏
页码:103 / 108
页数:6
相关论文
共 50 条
  • [1] Automatic detection of canonical image orientation by convolutional neural networks
    Morra, Lia
    Famouri, Sina
    Karakus, Huseyin Cagri
    Lamberti, Fabrizio
    2019 IEEE 23RD INTERNATIONAL SYMPOSIUM ON CONSUMER TECHNOLOGIES (ISCT), 2019, : 118 - 123
  • [2] Convolutional neural networks for automatic detection of breast pathologies
    Gonzalez-Fraga, Jose A.
    Kober, Vitaly
    Gutierrez-Lopez, Everardo
    Gonzalez-Sarabia, Alejandro
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XLV, 2022, 12226
  • [3] Segmentation Convolutional Neural Networks for Automatic Crater Detection on Mars
    DeLatte, Danielle M.
    Crites, Sarah T.
    Guttenberg, Nicholas
    Tasker, Elizabeth J.
    Yairi, Takehisa
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (08) : 2944 - 2957
  • [4] Automatic detection and classification of leukocytes using convolutional neural networks
    Jianwei Zhao
    Minshu Zhang
    Zhenghua Zhou
    Jianjun Chu
    Feilong Cao
    Medical & Biological Engineering & Computing, 2017, 55 : 1287 - 1301
  • [5] Automatic detection and classification of leukocytes using convolutional neural networks
    Zhao, Jianwei
    Zhang, Minshu
    Zhou, Zhenghua
    Chu, Jianjun
    Cao, Feilong
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2017, 55 (08) : 1287 - 1301
  • [6] Automatic Detection of Contouring Errors Using Convolutional Neural Networks
    Rhee, D.
    Cardenas, C.
    Elhalawani, H.
    McCarroll, R.
    Zhang, L.
    Yang, J.
    Beadle, B.
    Court, L.
    MEDICAL PHYSICS, 2019, 46 (06) : E282 - E282
  • [7] Automatic Detection of Melanoma with Yolo Deep Convolutional Neural Networks
    Nie, Yali
    Sommella, Paolo
    O'Nils, Mattias
    Liguori, Consolatina
    Lundgren, Jan
    2019 E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2019,
  • [8] Optimization of the Convolutional Neural Networks for Automatic Detection of Skin Cancer
    Zhang, Long
    Gao, Hong Jie
    Zhang, Jianhua
    Badami, Benjamin
    OPEN MEDICINE, 2020, 15 (01): : 27 - 37
  • [9] Automatic Detection of Epileptic Seizures with Recurrent and Convolutional Neural Networks
    Carrion, Salvador
    Lopez-Chilet, Alvaro
    Martinez-Bernia, Javier
    Coll-Alonso, Joan
    Chorro-Juan, Daniel
    Ander Gomez, Jon
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022 WORKSHOPS, PT I, 2022, 13373 : 522 - 532
  • [10] Automatic detection of contouring errors using convolutional neural networks
    Rhee, Dong Joo
    Cardenas, Carlos E.
    Elhalawani, Hesham
    McCarroll, Rachel
    Zhang, Lifei
    Yang, Jinzhong
    Garden, Adam S.
    Peterson, Christine B.
    Beadle, Beth M.
    Court, Laurence E.
    MEDICAL PHYSICS, 2019, 46 (11) : 5086 - 5097