Robust Estimation in Non-Linear State-Space Models With State-Dependent Noise

被引:15
|
作者
Agamennoni, Gabriel [1 ]
Nebot, Eduardo M. [1 ]
机构
[1] Univ Sydney, Australian Ctr Field Robot, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
Multi-variate stochastic volatility; non-Gaussian noise; non-linear time series; robust estimation; state-dependent noise; state-space models; SIMULTANEOUS LOCALIZATION; FILTER;
D O I
10.1109/TSP.2014.2305636
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a robust estimation algorithm for non-linear state-space models driven by state-dependent noise. The algorithm is robust to outliers in the data. We derive the algorithm step by step from first principles, from theory to implementation. The implementation is straightforward and consists mainly of two components: 1) a slightly modified version of the Rauch-Tung-Striebel recursions, and 2) a backtracking line search strategy. Since it preserves the underlying chain structure of the problem, its computational complexity grows linearly with the number of data. The algorithm is iterative and is guaranteed to converge, under mild assumptions, to a local optimum from any starting point. We validate our approach via experiments on synthetic data from a multi-variate stochastic volatility model.
引用
收藏
页码:2165 / 2175
页数:11
相关论文
共 50 条
  • [1] Robust Non-linear Smoother for State-space Models
    Agamennoni, Gabriel
    Nebot, Eduardo M.
    [J]. 2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 1044 - 1050
  • [2] AN APPROXIMATE METHOD OF STATE ESTIMATION FOR NON-LINEAR DYNAMICAL SYSTEMS WITH STATE-DEPENDENT NOISE
    SUNAHARA, Y
    YAMASHITA, K
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1970, 11 (06) : 957 - +
  • [3] On simultaneous on-line state and parameter estimation in non-linear state-space models
    Tulsyan, Aditya
    Huang, Biao
    Gopaluni, R. Bhushan
    Forbes, J. Fraser
    [J]. JOURNAL OF PROCESS CONTROL, 2013, 23 (04) : 516 - 526
  • [4] Nonlinear state-space models with state-dependent variances
    Stroud, JR
    Müller, P
    Polson, NG
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (462) : 377 - 386
  • [5] PARAMETER ESTIMATION IN NON-LINEAR STATE-SPACE MODELS BY AUTOMATIC DIFFERENTIATION OF NON-LINEAR KALMAN FILTERS
    Gorad, Ajinkya
    Zhao, Zheng
    Sarkka, Simo
    [J]. PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,
  • [6] ROBUST STABILITY IN LINEAR STATE-SPACE MODELS
    JIANG, CL
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1988, 48 (02) : 813 - 816
  • [7] An Introduction to Twisted Particle Filters and Parameter Estimation in Non-Linear State-Space Models
    Ala-Luhtala, Juha
    Whiteley, Nick
    Heine, Kari
    Piche, Robert
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (18) : 4875 - 4890
  • [8] On the estimation of state matrix and noise statistics in state-space models
    Enescu, M
    Koivunen, V
    [J]. IEEE 56TH VEHICULAR TECHNOLOGY CONFERENCE, VTC FALL 2002, VOLS 1-4, PROCEEDINGS, 2002, : 2192 - 2196
  • [9] Recursive subspace identification of linear and non-linear Wiener state-space models
    Lovera, M
    Gustafsson, T
    Verhaegen, M
    [J]. AUTOMATICA, 2000, 36 (11) : 1639 - 1650
  • [10] GLOBAL APPROACHES TO IDENTIFIABILITY TESTING FOR LINEAR AND NON-LINEAR STATE-SPACE MODELS
    WALTER, E
    LECOURTIER, Y
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 1982, 24 (06) : 472 - 482