Model-Driven Observability for Big Data Storage

被引:3
|
作者
Klein, John [1 ]
Gorton, Ian [2 ]
Alhmoud, Laila [3 ]
Gao, Joel [3 ]
Gemici, Caglayan [3 ]
Kapoor, Rajat [3 ]
Nair, Prasanth [3 ]
Saravagi, Varun [3 ]
机构
[1] Carnegie Mellon Univ, Inst Software Engn, Pittsburgh, PA 15213 USA
[2] Northeastern Univ, Seattle, WA USA
[3] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
关键词
big data; NoSQL; observability; model-driven engineering;
D O I
10.1109/WICSA.2016.27
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The scale, heterogeneity, and pace of evolution of the storage components in big data systems makes it impractical to manually insert monitoring code for observability metric collection and aggregation. In this paper we present an architecture that automates these metric collection processes, using a model-driven approach to configure a distributed runtime observability framework. We describe and evaluate an implementation of the architecture that collects and aggregates metrics for a big data system using heterogeneous NoSQL data stores. Our scalability tests demonstrate that the implementation can monitor 20 different metrics from 10,000 database nodes with a sampling interval of 20 seconds. Below this interval, we lose metrics due to the sustained write load required in the metrics database. This indicates that observability at scale must be able to support very high write loads in a metrics collection database.
引用
收藏
页码:134 / 139
页数:6
相关论文
共 50 条
  • [1] Model-Driven Visual Analytics for Big Data
    Cheng, Shenghui
    Wang, Bing
    Zhong, Wen
    Xie, Cong
    Mahmood, Salman
    Wang, Jun
    Mueller, Klaus
    [J]. 2016 NEW YORK SCIENTIFIC DATA SUMMIT (NYSDS), 2016,
  • [2] A model-driven approach to automate data visualization in big data analytics
    Golfarelli, Matteo
    Rizzi, Stefano
    [J]. INFORMATION VISUALIZATION, 2020, 19 (01) : 24 - 47
  • [3] Towards A Model-Driven Design Tool for Big Data Architectures
    Guerriero, Michele
    Tajfar, Saeed
    Tamburri, Damian A.
    Di Nitto, Elisabetta
    [J]. 2016 IEEE/ACM 2ND INTERNATIONAL WORKSHOP ON BIG DATA SOFTWARE ENGINEERING (BIGDSE 2016), 2016, : 37 - 43
  • [4] A Model-Driven Methodology for Big Data Analytics-as-a-Service
    Ardagna, Claudio A.
    Bellandi, Valerio
    Ceravolo, Paolo
    Damiani, Ernesto
    Bezzi, Michele
    Hebert, Cedric
    [J]. 2017 IEEE 6TH INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS 2017), 2017, : 105 - 112
  • [5] Requirements-Driven Visualizations for Big Data Analytics: A Model-Driven Approach
    Lavalle, Ana
    Mate, Alejandro
    Trujillo, Juan
    [J]. CONCEPTUAL MODELING, ER 2019, 2019, 11788 : 78 - 92
  • [6] A Model-Driven Architectural Design Method for Big Data Analytics Applications
    Castellanos, Camilo
    Perez, Boris
    Correal, Dario
    Varela, Carlos A.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ARCHITECTURE COMPANION (ICSA-C 2020), 2020, : 89 - 94
  • [7] Towards a Model-Driven Approach for Big Data Analytics in the Genomics Field
    Fernandes, Ana Xavier
    Ferreira, Filipa
    Leon, Ana
    Santos, Maribel Yasmina
    [J]. ADVANCES IN CONCEPTUAL MODELING, CMLS, EMPER AND JUSMOD, 2022, 13650 : 5 - 14
  • [8] Arion: A Model-driven Middleware for Minimizing Data Loss in Stream Data Storage
    Nhan Nguyen
    Khan, Mohammad Maifi Hasan
    Albayram, Yusuf
    Wang, Kewen
    Gokhale, Swapna
    [J]. 2017 IEEE 10TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (CLOUD), 2017, : 34 - 41
  • [9] Model-Driven Data Migration
    Aboulsamh, Mohammed
    Crichton, Edward
    Davies, Jim
    Welch, James
    [J]. ADVANCES IN CONCEPTUAL MODELING: APPLICATIONS AND CHALLENGES, 2010, 6413 : 285 - 294
  • [10] TOWARDS MODEL-DRIVEN EVOLUTION OF DATA WAREHOUSES
    Kurze, Christian
    Hofmann, Marcus
    Jacobi, Frieder
    Mueller, Andre
    Gluchowski, Peter
    [J]. ICEIS 2011: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL 1, 2011, : 356 - 360