Smoothness of generalized inverses

被引:3
|
作者
Leiterer, Juergen [2 ]
Rodman, Leiba [1 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[2] Humboldt Univ, Inst Math, D-12489 Berlin, Germany
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2012年 / 23卷 / 04期
关键词
Banach algebra; C*-algebra; Generalized inverse; Drazin inverse; Moore-Penrose inverse; Smoothness; Analytic dependence; RELATIVE INVERSES; LIFTING THEOREMS; VECTOR-FUNCTIONS; CONTINUITY; OPERATORS;
D O I
10.1016/j.indag.2012.09.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is largely expository. It is shown that if a (x) is a smooth unital Banach algebra valued function of a parameter x, and if a(x) has a locally bounded generalized inverse in the algebra, then a generalized inverse of a(x) exists which is as smooth as a(x) is. Smoothness is understood in the sense of having a certain number of continuous derivatives, being real-analytic, or complex holomorphic. In the complex holomorphic case, the space of parameters is required to be a Stein manifold. Local formulas for the generalized inverses are given. In particular, the Moore-Penrose and the generalized Drazin inverses are studied in this context. (C) 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:615 / 649
页数:35
相关论文
共 50 条
  • [1] Smoothness of generalized inverses
    Leiterer, Juergen
    Rodman, Leiba
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2012, 23 (03): : 487 - 521
  • [2] On Hermitian generalized inverses and positive semidefinite generalized inverses
    Xifu Liu
    Indian Journal of Pure and Applied Mathematics, 2014, 45 : 443 - 459
  • [3] ON HERMITIAN GENERALIZED INVERSES AND POSITIVE SEMIDEFINITE GENERALIZED INVERSES
    Liu, Xifu
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2014, 45 (04): : 443 - 459
  • [4] GENERALIZED INVERSES
    RABSON, G
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (05): : 779 - &
  • [5] GENERALIZED INVERSES
    Djordjevic, Dragan S.
    PROCEEDINGS OF THE TWENTY-SECOND INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2021, 22 : 13 - 32
  • [6] Generalized Inverses
    Rajko, Robert
    ACTA SCIENTIARUM MATHEMATICARUM, 2005, 71 (1-2): : 435 - 438
  • [8] GENERALIZED INVERSES AND GENERALIZED SPLINES
    GROETSCH, CW
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1980, 2 (01) : 93 - 97
  • [9] On the geometry of generalized inverses
    Andruchow, E
    Corach, G
    Mbekhta, M
    MATHEMATISCHE NACHRICHTEN, 2005, 278 (7-8) : 756 - 770
  • [10] Projections for generalized inverses
    Xu, Sanzhang
    Chen, Jianlong
    Benitez, Julio
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (08): : 1593 - 1605