The Locality of Distributed Symmetry Breaking

被引:63
|
作者
Barenboim, Leonid [1 ]
Elkin, Michael [1 ]
Pettie, Seth [2 ]
Schneider, Johannes [3 ]
机构
[1] Ben Gurion Univ Negev, Dept Comp Sci, IL-84105 Beer Sheva, Israel
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[3] ETH, Comp Engn & Network Lab, Zurich, Switzerland
基金
美国国家科学基金会; 以色列科学基金会;
关键词
Coloring; Maximal Independent Set; Maximal Matching; RANDOMIZED PARALLEL ALGORITHM;
D O I
10.1109/FOCS.2012.60
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present new bounds on the locality of several classical symmetry breaking tasks in distributed networks. A sampling of the results include 1) A randomized algorithm for computing a maximal matching (MM) in O(log Delta+(log log n)(4)) rounds, where Delta is the maximum degree. This improves a 25-year old randomized algorithm of Israeli and Itai that takes O(log n) rounds and is provably optimal for all log Delta in the range [(log log n)(4), root logn]. 2) A randomized maximal independent set (MIS) algorithm requiring O(log Delta root log n) rounds, for all Delta, and only 2(O(root log log n)) rounds when Delta = poly(logn). These improve on the 25-year old O(log n)-round randomized MIS algorithms of Luby and Alon, Babai, and Itai when log Delta << root log n. 3) A randomized (Delta + 1)-coloring algorithm requiring O(log Delta + 2(O(root log log n))) rounds, improving on an algorithm of Schneider and Wattenhofer that takes O(log Delta+root log n) rounds. This result implies that an O(Delta)-coloring can be computed in 2(O(root log log n)) rounds for all., improving on Kothapalli et al.'s O(root log n)-round algorithm. We also introduce a new technique for reducing symmetry breaking problems on low arboricity graphs to low degree graphs. Corollaries of this reduction include MM and MIS algorithms for low arboricity graphs (e. g., planar graphs and graphs that exclude any fixed minor) requiring O(root log n) and O(log(2/3) n) rounds w.h.p., respectively.
引用
收藏
页码:321 / 330
页数:10
相关论文
共 50 条
  • [1] The Locality of Distributed Symmetry Breaking
    Barenboim, Leonid
    Elkin, Michael
    Pettie, Seth
    Schneider, Johannes
    [J]. JOURNAL OF THE ACM, 2016, 63 (03)
  • [2] Effective locality and chiral symmetry breaking in QCD
    Grandou, T.
    Tsang, P. H.
    [J]. MODERN PHYSICS LETTERS A, 2019, 34 (40)
  • [3] Distributed Symmetry Breaking in Hypergraphs
    Kutten, Shay
    Nanongkai, Danupon
    Pandurangan, Gopal
    Robinson, Peter
    [J]. DISTRIBUTED COMPUTING (DISC 2014), 2014, 8784 : 469 - 483
  • [4] Chiral Symmetry Breaking out of QCD Effective Locality
    Grandou, Thierry
    Hofmann, Ralf
    Tsang, Peter H.
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [5] A New Technique For Distributed Symmetry Breaking
    Schneider, Johannes
    Wattenhofer, Roger
    [J]. PODC 2010: PROCEEDINGS OF THE 2010 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, 2010, : 257 - 266
  • [6] SYMMETRY-BREAKING IN DISTRIBUTED NETWORKS
    ITAI, A
    RODEH, M
    [J]. INFORMATION AND COMPUTATION, 1990, 88 (01) : 60 - 87
  • [7] Chiral symmetry breaking out of the effective locality property of QCD
    Grandou, T.
    [J]. PHYSICA SCRIPTA, 2020, 95 (09)
  • [8] Hardness of Minimal Symmetry Breaking in Distributed Computing
    Balliu, Alkida
    Hirvonen, Juho
    Olivetti, Dennis
    Suomela, Jukka
    [J]. PROCEEDINGS OF THE 2019 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC '19), 2019, : 369 - 378
  • [9] Distributed Symmetry Breaking in Graphs with Bounded Diversity
    Barenboim, Leonid
    Maimon, Tzalik
    [J]. 2018 32ND IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2018, : 723 - 732
  • [10] Distributed Symmetry-Breaking Algorithms for Congested Cliques
    Barenboim, Leonid
    Khazanov, Victor
    [J]. COMPUTER SCIENCE - THEORY AND APPLICATIONS, CSR 2018, 2018, 10846 : 41 - 52