Estimation of tire-road friction using observer based identifiers

被引:116
|
作者
Yi, K [1 ]
Hedrick, K [1 ]
Lee, SC [1 ]
机构
[1] Hanyang Univ, Sch Mech Engn, Seoul 133791, South Korea
关键词
D O I
10.1076/vesd.31.4.233.4231
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents methods for identifying the tire-road friction coefficient. The proposed methods are: an observer-based least square method and an observer/filtered-regressor-based method. These methods were designed assuming that some of the states are not available since physical parameter identification methods developed assuming that the system states are available are not attractive from a practical point of view. The observer is used to estimate signals which are difficult or expensive to measure. Using the estimated states of the system and the filtered-regressor, the parameter estimates are obtained. The proposed methods are evaluated on an eight state nonlinear vehicle/transmission simulation model with a Bakker-Pacejka's formula tire model. Vehicle tests have been performed on dry and wet roads to verify the performance of the methods. It has been shown through simulations and vehicle tests how the RPM sensors can be used with observer based identification methods to estimate the tire-road friction from measurements of engine rpm, transmission output speed and wheel speed. The proposed methods will be useful in the implementation and adaptation of vehicle collision warning/avoidance algorithm since the tire-road friction can be estimated only using the RPM sensors which are currently being used in production vehicles.
引用
收藏
页码:233 / 261
页数:29
相关论文
共 50 条
  • [1] Estimation of tire-road friction using observer based identifiers
    School of Mechanical Engineering, Hanyang University, Seoul, 133-791, Korea, Republic of
    不详
    不详
    Veh Syst Dyn, 4 (233-261):
  • [2] Vehicle Nonlinear Observer for state and Tire-Road friction estimation
    Yacine, Zedjiga
    Ichalal, Dalil
    Oufroukh, Naima Ait
    Mammar, Said
    2013 16TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS - (ITSC), 2013, : 2181 - 2186
  • [3] Observer based estimation of tire-road friction for collision warning algorithm adaptation
    Yi, K
    Jeong, T
    JSME INTERNATIONAL JOURNAL SERIES C-MECHANICAL SYSTEMS MACHINE ELEMENTS AND MANUFACTURING, 1998, 41 (01) : 116 - 124
  • [4] Estimation of tire-road friction based on tire torsional resonance
    Toyota Central R and D Labs., Inc., Nagakute-cho, Aichi, 480-1192, Japan
    不详
    不详
    不详
    不详
    1600, 341-345 (July 2004):
  • [5] Nonlinear Observer for Vehicle Velocity and Tire-Road Friction Coefficient Estimation
    Peng, Ying
    Chen, Jian
    Yu, Jiangze
    Ma, Yan
    Zheng, Huarong
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 2606 - 2611
  • [6] Grid Search Based Tire-Road Friction Estimation
    Shao, Liang
    Jin, Chi
    Eichberger, Arno
    Lex, Cornelia
    IEEE ACCESS, 2020, 8 : 81506 - 81525
  • [7] Tire-road friction coefficient estimation based on normalized tire model
    Liu, Li
    Luo, Yugong
    Li, Keqiang
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2009, 49 (05): : 723 - 727
  • [8] Tire-Road Forces Estimation Based on Sliding Mode Observer
    Guo, Hongyan
    Chen, Hong
    Song, Tonghao
    2009 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS 1-7, CONFERENCE PROCEEDINGS, 2009, : 4577 - 4582
  • [9] Observer-based estimation of velocity and tire-road friction coefficient for vehicle control systems
    Ying Peng
    Jian Chen
    Yan Ma
    Nonlinear Dynamics, 2019, 96 : 363 - 387
  • [10] Observer-based estimation of velocity and tire-road friction coefficient for vehicle control systems
    Peng, Ying
    Chen, Jian
    Ma, Yan
    NONLINEAR DYNAMICS, 2019, 96 (01) : 363 - 387