Dynamic Random Forests

被引:81
|
作者
Bernard, Simon [1 ]
Adam, Sebastien [1 ]
Heutte, Laurent [1 ]
机构
[1] Univ Rouen, LITIS EA 4108, F-76801 St Etienne, France
关键词
Random forests; Ensemble of classifiers; Random feature selection; Dynamic induction;
D O I
10.1016/j.patrec.2012.04.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce a new Random Forest (RF) induction algorithm called Dynamic Random Forest (DRF) which is based on an adaptative tree induction procedure. The main idea is to guide the tree induction so that each tree will complement as much as possible the existing trees in the ensemble. This is done here through a resampling of the training data, inspired by boosting algorithms, and combined with other randomization processes used in traditional RF methods. The DRF algorithm shows a significant improvement in terms of accuracy compared to the standard static RF induction algorithm. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1580 / 1586
页数:7
相关论文
共 50 条
  • [1] Dynamic integration with random forests
    Tsymbal, Alexey
    Pechenizkiy, Mykola
    Cunningham, Padraig
    [J]. MACHINE LEARNING: ECML 2006, PROCEEDINGS, 2006, 4212 : 801 - 808
  • [2] Continuous Dynamic Update of Fuzzy Random Forests
    Jordi Pascual-Fontanilles
    Aida Valls
    Antonio Moreno
    Pedro Romero-Aroca
    [J]. International Journal of Computational Intelligence Systems, 15
  • [3] Continuous Dynamic Update of Fuzzy Random Forests
    Pascual-Fontanilles, Jordi
    Valls, Aida
    Moreno, Antonio
    Romero-Aroca, Pedro
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2022, 15 (01)
  • [4] Object Recognition Based on Dynamic Random Forests and SURF Descriptor
    Jayech, Khaoula
    Mahjoub, Mohamed Ali
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2017, 2017, 10585 : 355 - 364
  • [5] Imprecise Extensions of Random Forests and Random Survival Forests
    Utkin, Lev, V
    Kovalev, Maxim S.
    Meldo, Anna A.
    Coolen, Frank P. A.
    [J]. PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITIES: THEORIES AND APPLICATIONS (ISIPTA 2019), 2019, 103 : 404 - 413
  • [6] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [7] Random Forests
    Leo Breiman
    [J]. Machine Learning, 2001, 45 : 5 - 32
  • [8] Random forests
    Pavlov, YL
    [J]. PROBABILISTIC METHODS IN DISCRETE MATHEMATICS, 1997, : 11 - 18
  • [9] Classifying evolving data streams using dynamic Streaming Random Forests
    Abdulsalam, H.
    Skillicorn, D. B.
    Martin, P.
    [J]. DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2008, 5181 : 643 - 651
  • [10] Dynamic estimation with random forests for discrete-time survival data
    Moradian, Hoora
    Yao, Weichi
    Larocque, Denis
    Simonoff, Jeffrey S.
    Frydman, Halina
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (02): : 533 - 548