Chiral limit of N=4 SYM and ABJM and integrable Feynman graphs

被引:0
|
作者
Caetano, Joao [1 ,2 ]
Gurdogan, Omer [1 ,2 ,3 ]
Kazakov, Vladimir [1 ,2 ]
机构
[1] Ecole Normale Super, Lab Phys Theor, 24 Rue Lhomond, F-75231 Paris, France
[2] Univ Paris VI, 24 Rue Lhomond, F-75231 Paris, France
[3] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
来源
基金
欧洲研究理事会;
关键词
Conformal Field Theory; Integrable Field Theories; OPERATORS; DUALITY;
D O I
10.1007/JHEP03(2018)077
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider a special double scaling limit, recently introduced by two of the authors, combining weak coupling and large imaginary twist, for the gamma-twisted N = 4 SYM theory. We also establish the analogous limit for ABJM theory. The resulting non-gauge chiral 4D and 3D theories of interacting scalars and fermions are integrable in the planar limit. In spite of the breakdown of conformality by double-trace interactions, most of the correlators for local operators of these theories are conformal, with non-trivial anomalous dimensions defined by specific, integrable Feynman diagrams. We discuss the details of this diagrammatics. We construct the doubly-scaled asymptotic Bethe ansatz (ABA) equations for multi-magnon states in these theories. Each entry of the mixing matrix of local conformal operators in the simplest of these theories - the bi-scalar model in 4D and tri-scalar model in 3D - is given by a single Feynman diagram at any given loop order. The related diagrams are in principle computable, up to a few scheme dependent constants, by integrability methods (quantum spectral curve or ABA). These constants should be fixed from direct computations of a few simplest graphs. This integrability-based method is advocated to be able to provide information about some high loop order graphs which are hardly computable by other known methods. We exemplify our approach with specific five-loop graphs.
引用
收藏
页数:42
相关论文
共 50 条
  • [1] Chiral limit of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM and ABJM and integrable Feynman graphs
    João Caetano
    Ömer Gürdoğan
    Vladimir Kazakov
    [J]. Journal of High Energy Physics, 2018 (3)
  • [2] The N=4 SYM integrable super spin chain
    Beisert, N
    Staudacher, M
    [J]. NUCLEAR PHYSICS B, 2003, 670 (03) : 439 - 463
  • [3] Deformations of N = 4 SYM and integrable spin chain models
    Berenstein, D
    Cherkis, SA
    [J]. NUCLEAR PHYSICS B, 2004, 702 (1-2) : 49 - 85
  • [4] Grassmannians for scattering amplitudes in 4d N=4 SYM and 3d ABJM
    Elvang, Henriette
    Huang, Yu-tin
    Keeler, Cynthia
    Lam, Thomas
    Olson, Timothy M.
    Roland, Samuel B.
    Speyer, David E.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (12):
  • [5] An all order identity between ABJM and N=4 SYM four-point amplitudes
    Bianchi, Marco S.
    Leoni, Matias
    Penati, Silvia
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (04):
  • [6] Bootstrapping two-loop Feynman integrals for planar N=4 sYM
    Henn, Johannes
    Herrmann, Enrico
    Parra-Martinez, Julio
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (10):
  • [7] Integrable amplitude deformations for N=4 super Yang-Mills and ABJM theory
    Bargheer, Till
    Huang, Yu-Tin
    Loebbert, Florian
    Yamazaki, Masahito
    [J]. PHYSICAL REVIEW D, 2015, 91 (02):
  • [8] AMPLITUDES IN THE MULTI-REGGE LIMIT OF N=4 SYM
    Del Duca, Vittorio
    Druc, Stefan
    Drummond, James
    Duhr, Claude
    Dulat, Falko
    Marzucca, Robin
    Papathanasiou, Georgios
    Verbeek, Bram
    [J]. ACTA PHYSICA POLONICA B PROCEEDINGS SUPPLEMENT, 2019, 12 (04) : 961 - 966
  • [9] On the cusp anomalous dimension in the ladder limit of N=4 SYM
    Beccaria, Matteo
    Fachechi, Alberto
    Macorini, Guido
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (06):
  • [10] HIGHER-POINT FUNCTIONS IN N=4 SYM FROM AN INTEGRABLE SYSTEM
    Eden, B.
    [J]. ACTA PHYSICA POLONICA B PROCEEDINGS SUPPLEMENT, 2023, 16 (05)