FEMH Voice Data Challenge: Voice disorder Detection and Classification using Acoustic Descriptors

被引:0
|
作者
Bhat, Chitralekha [1 ]
Kopparapu, Sunil Kumar [1 ]
机构
[1] Tata Consultancy Serv Ltd, TCS Res & Innovat, Mumbai, Maharashtra, India
关键词
FEMH; Voice disorders; Neoplasm; Phonotrauma; Vocal Palsy;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes the participation of TCS Research and Innovation, Mumbai in the FEMH voice data challenge. The goal of the FEMH voice data challenge is detection of pathological voice and classification into three different categories using voice samples. In this work, we use a mix of speech processing and machine learning techniques to not only automatically detect pathological speech but also classify into one of the three categories namely, Neoplasm, Phonotrauma and Vocal Palsy.
引用
收藏
页码:5233 / 5237
页数:5
相关论文
共 50 条
  • [1] IEEE FEMH Voice Data Challenge 2018
    Ramalingam, Archana
    Kedari, Sharat
    Vuppalapati, Chandrasekar
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 5272 - 5276
  • [2] The UCD System for the 2018 FEMH Voice Data Challenge
    Degila, Kevin
    Errattahi, Rahhal
    El Hannani, Asmaa
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 5242 - 5246
  • [3] A Transfer Learning Approach for the 2018 FEMH Voice Data Challenge
    Islam, Kazi Aminul
    Perez, Daniel
    Li, Jiang
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 5252 - 5257
  • [4] Enhanced Voice Activity Detection Using Acoustic Event Detection and Classification
    Cho, Namgook
    Kim, Eun-Kyoung
    [J]. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2011, 57 (01) : 196 - 202
  • [5] ByoVoz Automatic Voice Condition Analysis System for the 2018 FEMH Challenge
    David Arias-Londono, Julian
    Andres Gomez-Garcia, Jorge
    Moro-Velazquez, Laureano
    Ignacio Godino-Llorente, Juan
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 5228 - 5232
  • [6] Using ASR Posterior Probability and Acoustic Features for Voice Disorder Classification
    Tulics, Miklos Gabriel
    Szaszak, Gyorgy
    Meszaros, Krisztina
    Vicsi, Klara
    [J]. 2020 11TH IEEE INTERNATIONAL CONFERENCE ON COGNITIVE INFOCOMMUNICATIONS (COGINFOCOM 2020), 2020, : 155 - 159
  • [7] ACOUSTIC PROPERTIES OF VOICE TIMBER TYPES AND THEIR INFLUENCE ON VOICE CLASSIFICATION
    CLEVELAND, TF
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1977, 61 (06): : 1622 - 1629
  • [8] Voice Recognition and Document Classification-Based Data Analysis for Voice Phishing Detection
    Kim, Jeong-Wook
    Hong, Gi-Wan
    Chang, Hangbae
    [J]. HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2021, 11
  • [9] AUTOMATIC VOICE DISORDER CLASSIFICATION USING VOWEL FORMANTS
    Muhammad, Ghulam
    Alsulaiman, Mansour
    Mahmood, Awais
    Ali, Zulfiqar
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2011,
  • [10] Multilabel voice disorder classification using raw waveforms
    Disken, Gokay
    [J]. TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2024, 32 (04) : 590 - 604