A hierarchical Bayesian framework for calibrating micro-level models with macro-level data

被引:61
|
作者
Booth, A. T. [1 ]
Choudhary, R. [1 ]
Spiegelhalter, D. J. [2 ]
机构
[1] Univ Cambridge, Dept Engn, Energy Efficient Cities Initiat, Cambridge CB2 1PZ, England
[2] Univ Cambridge, Ctr Math Sci, Stat Lab, Cambridge CB3 0WB, England
基金
英国工程与自然科学研究理事会;
关键词
Bayesian; calibration; regression; retrofit; housing stock; uncertainty; ENERGY-CONSUMPTION; SENSITIVITY-ANALYSIS; RESIDENTIAL SECTOR; BUILDING STOCK; UNCERTAINTY; REGRESSION; SIMULATION; VARIABLES;
D O I
10.1080/19401493.2012.723750
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Owners of housing stocks require reliable and flexible tools to assess the impact of retrofits technologies. Bottom-up engineering-based housing stock models can help to serve such a function. These models require calibrating, using micro-level energy measurements at the building level, to improve model accuracy; however, the only publicly available data for the UK housing stock is at the macro-level, at the district, urban, or national scale. This paper outlines a method for using macro-level data to calibrate micro-level models. A hierarchical framework is proposed, utilizing a combination of regression analysis and Bayesian inference. The result is a Bayesian regression method that generates estimates of the average energy use for different dwelling types whilst quantifying uncertainty in both the empirical data and the generated energy estimates. Finally, the Bayesian regression method is validated and the use of the hierarchical Bayesian calibration framework is demonstrated.
引用
收藏
页码:293 / 318
页数:26
相关论文
共 50 条
  • [1] Micro-level indeterminism and macro-level determinism
    Glymour, B
    Sabatés, M
    [J]. PROCEEDINGS OF THE TWENTIETH WORLD CONGRESS OF PHILOSOPHY, VOL 10: PHILOSOPHY OF SCIENCE, 2001, : 11 - 18
  • [2] Comparing micro-level and macro-level models for epidemic diffusion in the metro system
    Kuo, Pei-Fen
    Wen, Tzai-Hung
    Chuang, Ting-Wu
    Chiu, Chui-Sheng
    Ye, Yi-Jyun
    Putra, I. Gede Brawiswa
    [J]. JOURNAL OF SIMULATION, 2024,
  • [3] Simulating Macro-Level Effects from Micro-Level Observations
    Smith, Edward Bishop
    Rand, William
    [J]. MANAGEMENT SCIENCE, 2018, 64 (11) : 5405 - 5421
  • [4] Polarization on Social Media: Micro-Level Evidence and Macro-Level Implications
    Keijzer, Marijn A.
    Mas, Michael
    Flache, Andreas
    [J]. JASSS-THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION, 2024, 27 (01):
  • [5] Consumer inflation views: Micro-level inconsistencies and macro-level measures
    Stanislawska, Ewa
    Paloviita, Maritta
    Lyziak, Tomasz
    [J]. ECONOMICS LETTERS, 2021, 206
  • [6] Modeling the micro-macro link: Understanding macro-level outcomes using randomization tests on micro-level data
    Dijkstra, Jacob
    Bouman, Loes
    Bakker, Dieko M.
    van Assen, Marcel A. L. M.
    [J]. SOCIAL SCIENCE RESEARCH, 2019, 77 : 79 - 87
  • [7] The effect of micro-level and macro-level signalling on learning with 360° videos
    Beege, Maik
    Nebel, Steve
    Schneider, Sascha
    Rey, Guenter Daniel
    [J]. APPLIED COGNITIVE PSYCHOLOGY, 2024, 38 (02)
  • [8] GOVERNMENTAL INNOVATION SUPPORT IN NORWAY - MICRO-LEVEL AND MACRO-LEVEL EFFECTS
    GRONHAUG, K
    FREDRIKSEN, T
    [J]. RESEARCH POLICY, 1984, 13 (03) : 165 - 173
  • [9] Micro-Level Adaptation, Macro-Level Selection, and the Dynamics of Market Partitioning
    Garcia-Diaz, Cesar
    van Witteloostuijn, Arjen
    Peli, Gabor
    [J]. PLOS ONE, 2015, 10 (12):
  • [10] SIMULATING THE MICRO-LEVEL BEHAVIOR OF EMERGENCY DEPARTMENT FOR MACRO-LEVEL FEATURES PREDICTION
    Liu, Zhengchun
    Rexachs, Dolores
    Luque, Emilio
    Epelde, Francisco
    Cabrera, Eduardo
    [J]. 2015 WINTER SIMULATION CONFERENCE (WSC), 2015, : 171 - 182