Finiteness of outer automorphism groups of random right-angled Artin groups

被引:7
|
作者
Day, Matthew B. [1 ]
机构
[1] Univ Arkansas, Dept Math Sci, Fayetteville, AR 72701 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2012年 / 12卷 / 03期
关键词
Automorphism group of group; Random graph; Right-angled Artin group;
D O I
10.2140/agt.2012.12.1553
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the outer automorphism group Out (A(Gamma)) of the right- angled Artin group A(Gamma) of a random graph Gamma on n vertices in the Erdos-Renyi model. We show that the functions n(-1) (log(n) + log(log(n))) and 1 - n(-1)(log(n) + log(log(n))) bound the range of edge probability functions for which Out(A(Gamma)) is finite: if the probability of an edge in Gamma is strictly between these functions as n grows, then asymptotically Out(A(Gamma)) is almost surely finite, and if the edge probability is strictly outside of both of these functions, then asymptotically Out(A(Gamma)) is almost surely infinite. This sharpens a result of Ruth Charney and Michael Farber.
引用
收藏
页码:1553 / 1583
页数:31
相关论文
共 50 条