Microwave -activated structured reactors to maximize propylene selectivity in the oxidative dehydrogenation of propane

被引:43
|
作者
Ramirez, Adrian [1 ,2 ,5 ]
Hueso, Jose L. [1 ,2 ,3 ,4 ]
Mallada, Reyes [1 ,2 ,3 ,4 ]
Santamaria, Jesus [1 ,2 ,3 ,4 ]
机构
[1] Univ Zaragoza, Inst Nanosci Aragon, C Mariano Esquillor S-N, Zaragoza 50018, Spain
[2] Univ Zaragoza, Dept Chem & Environm Engn, C Mariano Esquillor S-N, Zaragoza 50018, Spain
[3] Networking Res Ctr Bioengn Biomat & Nanomed CIBER, Madrid 28029, Spain
[4] Univ Zaragoza, Consejo Super Invest Cient CSIC, Inst Ciencia Mat Aragon ICMA, Zaragoza, Spain
[5] King Abdullah Univ Sci & Technol KAUST, Thuwal 23955, Saudi Arabia
基金
欧洲研究理事会;
关键词
PROMOTED MAGNESIA CATALYST; VANADIA CATALYSTS; HEAT-TRANSFER; HOT-SPOTS; OXIDE; ALKANES; ETHANE; GENERATION; CONVERSION; MONOLITHS;
D O I
10.1016/j.cej.2020.124746
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microwave (MW) heating has been applied to increase the selectivity to propylene in the oxidative dehydrogenation (ODH) of propane. The preferential heating of the solid monolith (made of SiC, a good microwave susceptor), allows working with a lower gas phase temperature, reducing the formation of undesired by-products in the gas phase via homogeneous reactions. Conversion levels of ~ 21% and selectivity to propylene up to 70% have been achieved with MW-heated straight channel monolithic reactors coated with a VMgO catalyst. These competitive values contrast with the more limited performance delivered by the same catalytic system when it is subjected to conventional heating in a fixed-bed reactor configuration, thereby corroborating the advantage of working under a significant gas–solid temperature gap to minimize the extent of homogeneous reactions. © 2020 Elsevier B.V.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] CATALYTIC OXIDATIVE DEHYDROGENATION OF PROPANE TO PROPYLENE
    ASHMAWY, FM
    JOURNAL OF CATALYSIS, 1977, 46 (03) : 424 - 425
  • [2] Kinetics of propane oxidative dehydrogenation to propylene
    You, HJ
    PETROLEUM SCIENCE AND TECHNOLOGY, 2005, 23 (11-12) : 1441 - 1452
  • [3] Boosting the propylene selectivity over embryonic borosilicate zeolite catalyst for oxidative dehydrogenation of propane
    Qiu, Bin
    Lu, Wen -Duo
    Gao, Xin-Qian
    Sheng, Jian
    Ji, Min
    Wang, Dongqi
    Lu, An -Hui
    JOURNAL OF CATALYSIS, 2023, 417 : 14 - 21
  • [4] Oxidative dehydrogenation of propane to propylene with carbon dioxide
    Atanga, Marktus A.
    Rezaei, Fateme
    Jawad, Abbas
    Fitch, Mark
    Rownaghi, Ali A.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 220 : 429 - 445
  • [5] PROPYLENE EFFECT ON PROPANE DEHYDROGENATION IN OXIDATIVE AMMONOLYSIS
    MASLOVA, NV
    OSIPOVA, ZG
    REACTION KINETICS AND CATALYSIS LETTERS, 1991, 43 (01): : 201 - 207
  • [6] OXIDATIVE DEHYDROGENATION OF PROPANE ON CATALYTIC MEMBRANE REACTORS
    PANTAZIDIS, A
    DALMON, JA
    MIRODATOS, C
    CATALYSIS TODAY, 1995, 25 (3-4) : 403 - 408
  • [7] Modulation of the cobalt species state on zincosilicate to maximize propane dehydrogenation to propylene
    Liu, Hao
    Chu, Bingxian
    Chen, Tianxiang
    Zhou, Jie
    Dong, Lihui
    Lo, Tsz Woon Benedict
    Li, Bin
    He, Xiaohui
    Ji, Hongbing
    Chinese Journal of Catalysis, 2024, 66 : 168 - 180
  • [8] Downer fluidized bed reactor modeling for catalytic propane oxidative dehydrogenation with high propylene selectivity
    Rostom, S.
    de Lasa, H.
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2019, 137 : 87 - 99
  • [9] Study on Catalysts for Catalytic Oxidative Dehydrogenation of Propane to Propylene
    Huang, Zuyao
    Yang, Jingen
    Zhang, Guotai
    Huadong Huagong Xueyuan Xuebao/Journal of East China Institute of Chemical Technology, 1988, 14 (04): : 512 - 516
  • [10] High Propylene Selectivity via Propane Oxidative Dehydrogenation Using a Novel Fluidizable Catalyst: Kinetic Modeling
    Rostom, S.
    de Lasa, H.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (31) : 10251 - 10260