The 'recovered space' advection scheme for lowest-order compatible finite element methods

被引:4
|
作者
Bendall, Thomas M.
Cotter, Colin J.
Shipton, Jemma
机构
基金
英国工程与自然科学研究理事会;
关键词
Advection scheme; Discontinuous Galerkin; Compatible finite element methods; Numerical weather prediction; SHALLOW-WATER EQUATIONS; APPROXIMATIONS;
D O I
10.1016/j.jcp.2019.04.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a new compatible finite element advection scheme for the compressible Euler equations. Unlike the discretisations described in Cotter and Kuzmin (2016) and Shipton et al.(2018), the discretisation uses the lowest-order family of compatible finite element spaces, but still retains second-order numerical accuracy. This scheme obtains this second-order accuracy by first 'recovering' the function in higher-order spaces, before using the discontinuous Galerkin advection schemes of Cotter and Kuzmin (2016). As well as describing the scheme, we also present its stability properties and a strategy for ensuring boundedness. We then demonstrate its properties through some numerical tests, before presenting its use within a model solving the compressible Euler equations. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:342 / 358
页数:17
相关论文
共 50 条
  • [1] Lowest-order equivalent nonstandard finite element methods for biharmonic plates
    Carstensen, Carsten
    Nataraj, Neela
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (01) : 41 - 78
  • [2] HIERARCHICAL ERROR ESTIMATORS FOR LOWEST-ORDER MIXED FINITE ELEMENT METHODS
    Kim, Kwang-Yeon
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2014, 22 (03): : 429 - 441
  • [3] A lowest-order composite finite element exact sequence on pyramids
    Ainsworth, Mark
    Fu, Guosheng
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 324 : 110 - 127
  • [4] Lowest-order virtual element methods for linear elasticity problems
    Kwak, Do Y.
    Park, Hyeokjoo
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 390
  • [5] Lowest-Order Weak Galerkin Finite Element Methods for Linear Elasticity on Rectangular and Brick Meshes
    Harper, Graham
    Liu, Jiangguo
    Tavener, Simon
    Zheng, Bin
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (03) : 1917 - 1941
  • [6] The lowest-order stabilizer free weak Galerkin finite element method
    Al-Taweel, Ahmed
    Wang, Xiaoshen
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 157 : 434 - 445
  • [7] Lowest-Order Weak Galerkin Finite Element Methods for Linear Elasticity on Rectangular and Brick Meshes
    Graham Harper
    Jiangguo Liu
    Simon Tavener
    Bin Zheng
    [J]. Journal of Scientific Computing, 2019, 78 : 1917 - 1941
  • [8] Convergence of a lowest-order finite element method for the transmission eigenvalue problem
    Camano, Jessika
    Rodriguez, Rodolfo
    Venegas, Pablo
    [J]. CALCOLO, 2018, 55 (03)
  • [9] Convergence of a lowest-order finite element method for the transmission eigenvalue problem
    Jessika Camaño
    Rodolfo Rodríguez
    Pablo Venegas
    [J]. Calcolo, 2018, 55
  • [10] Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes
    Vohralik, Martin
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (02): : 367 - 391