Parallel Levenberg-Marquardt Algorithm Without Error Backpropagation

被引:10
|
作者
Bilski, Jaroslaw [1 ]
Wilamowski, Bogdan M. [2 ]
机构
[1] Czestochowa Tech Univ, Inst Computat Intelligence, Czestochowa, Poland
[2] Auburn Univ, Auburn, AL 36849 USA
关键词
Forward-only computation; Neural network training; Parallel architectures; REALIZATION; NETWORKS;
D O I
10.1007/978-3-319-59063-9_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new parallel architecture of the Levenberg-Marquardt (LM) algorithm for training fully connected feedforward neural networks, which will also work for MLP but some cells will stay empty. This approach is based on a very interesting idea of learning neural networks without error backpropagation. The presented architecture is based on completely new parallel structures to significantly reduce a very high computational load of the LM algorithm. A full explanation of parallel three-dimensional neural network learning structures is provided.
引用
收藏
页码:25 / 39
页数:15
相关论文
共 50 条
  • [1] A Parallel Levenberg-Marquardt Algorithm
    Cao, Jun
    Novstrup, Krista A.
    Goyal, Ayush
    Midkiff, Samuel R.
    Caruthers, James M.
    [J]. ICS'09: PROCEEDINGS OF THE 2009 ACM SIGARCH INTERNATIONAL CONFERENCE ON SUPERCOMPUTING, 2009, : 450 - 459
  • [2] The Parallel Modification to the Levenberg-Marquardt Algorithm
    Bilski, Jaroslaw
    Kowalczyk, Bartosz
    Grzanek, Konrad
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2018, PT I, 2018, 10841 : 15 - 24
  • [3] Prediction of Students' GPA Using Levenberg-Marquardt Backpropagation Algorithm
    Sabukunze, Igor Didier
    Alvinika, Yohanes
    Waworuntu, Billy Josef
    Mudjihartono, Paulus
    [J]. 2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [4] Backpropagation and Levenberg-Marquardt Algorithm for Training Finite Element Neural Network
    Reynaldi, Arnold
    Lukas, Samuel
    Margaretha, Helena
    [J]. 2012 SIXTH UKSIM/AMSS EUROPEAN SYMPOSIUM ON COMPUTER MODELLING AND SIMULATION (EMS), 2012, : 89 - 94
  • [5] Parallel and separable recursive Levenberg-Marquardt training algorithm
    Asirvadam, VS
    McLoone, SF
    Irwin, GW
    [J]. NEURAL NETWORKS FOR SIGNAL PROCESSING XII, PROCEEDINGS, 2002, : 129 - 138
  • [6] Modifying weights layer-by-layer with Levenberg-Marquardt backpropagation algorithm
    He, S
    Sepehri, N
    Unbehauen, R
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2001, 7 (04): : 233 - 247
  • [7] Levenberg-Marquardt backpropagation algorithm for parameter identification of solid oxide fuel cells
    Yang, Bo
    Chen, Yijun
    Guo, Zhengxun
    Wang, Jingbo
    Zeng, Chunyuan
    Li, Danyang
    Shu, Hongchun
    Shan, Jieshan
    Fu, Ting
    Zhang, Xiaoshun
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (12) : 17903 - 17923
  • [8] Adaptive Levenberg-Marquardt Algorithm: A New Optimization Strategy for Levenberg-Marquardt Neural Networks
    Yan, Zhiqi
    Zhong, Shisheng
    Lin, Lin
    Cui, Zhiquan
    [J]. MATHEMATICS, 2021, 9 (17)
  • [9] The application and modeling of the Levenberg-Marquardt algorithm
    Li, Jian-rong
    [J]. 2010 2ND INTERNATIONAL CONFERENCE ON E-BUSINESS AND INFORMATION SYSTEM SECURITY (EBISS 2010), 2010, : 278 - 280
  • [10] Parallel Approach to the Levenberg-Marquardt Learning Algorithm for Feedforward Neural Networks
    Bilski, Jaroslaw
    Smolag, Jacek
    Zurada, Jacek M.
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I, 2015, 9119 : 3 - 14