Sharp hierarchical upper bounds on the critical two-point function for long-range percolation on Zd

被引:3
|
作者
Hutchcroft, Tom [1 ]
机构
[1] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
关键词
MEAN-FIELD BEHAVIOR; CRITICAL EXPONENTS; PHASE-TRANSITION; MODELS;
D O I
10.1063/5.0088450
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Consider long-range Bernoulli percolation on Z(d) in which we connect each pair of distinct points x and y by an edge with probability 1 - exp(-beta||x - y||(-d-alpha)), where alpha > 0 is fixed and beta >= 0 is a parameter. We prove that if 0 < alpha < d, then the critical two-point function satisfies 1|Lambda r| Sigma(x is an element of Lambda) P-beta c (0 <-> x) less than or similar to r(-d+alpha) for every r >= 1, where Lambda(r)=[-r,r](d) boolean AND Z(d). In other words, the critical two-point function on Z(d) is always bounded above on average by the critical two-point function on the hierarchical lattice. This upper bound is believed to be sharp for values of alpha strictly below the crossover value alpha(c)(d), where the values of several critical exponents for long-range percolation on Z(d) and the hierarchical lattice are believed to be equal. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] THE CRITICAL TWO-POINT FUNCTION FOR LONG-RANGE PERCOLATION ON THE HIERARCHICAL LATTICE
    Hutchcroft, Tom
    [J]. ANNALS OF APPLIED PROBABILITY, 2024, 34 (1B): : 986 - 1002
  • [2] Critical Two-Point Function for Long-Range O(n) Models Below the Upper Critical Dimension
    Lohmann, Martin
    Slade, Gordon
    Wallace, Benjamin C.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2017, 169 (06) : 1132 - 1161
  • [3] Critical Two-Point Function for Long-Range O(n) Models Below the Upper Critical Dimension
    Martin Lohmann
    Gordon Slade
    Benjamin C. Wallace
    [J]. Journal of Statistical Physics, 2017, 169 : 1132 - 1161
  • [4] Critical point and percolation probability in a long range site percolation model on Zd
    de Lima, Bernardo N. B.
    Sanchis, Remy
    Silva, Roger W. C.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (09) : 2043 - 2048
  • [5] Power-law bounds for critical long-range percolation below the upper-critical dimension
    Tom Hutchcroft
    [J]. Probability Theory and Related Fields, 2021, 181 : 533 - 570
  • [7] PERCOLATION OF WORDS ON Zd WITH LONG-RANGE CONNECTIONS
    De Lima, B. N. B.
    Sanchis, R.
    Silva, R. W. C.
    [J]. JOURNAL OF APPLIED PROBABILITY, 2011, 48 (04) : 1152 - 1162
  • [8] Isoperimetric lower bounds for critical exponents for long-range percolation
    Baeumler, Johannes
    Berger, Noam
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (01): : 721 - 730
  • [9] Estimates on the effective resistance in a long-range percolation on Zd
    Misumi, Jun
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2008, 48 (02): : 389 - 400
  • [10] Long-range percolation on the hierarchical lattice
    Koval, Vyacheslav
    Meester, Ronald
    Trapman, Pieter
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17 : 1 - 21