A comparison of slow-frequency-hop and direct-sequence spread-spectrum communications over frequency-selective fading channels

被引:10
|
作者
Gass, JH [1 ]
Pursley, MB
机构
[1] ITT Aerosp Commun Div, Pendelton, SC 29670 USA
[2] Clemson Univ, Clemson, SC 29634 USA
关键词
code-division multiple access (CDMA); direct-sequence spread spectrum; frequency-hop communications; selective fading;
D O I
10.1109/26.768767
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Spread-spectrum modulation can provide protection from the selective fading that is typically encountered in mobile radio networks. Because the methods of combating frequency-selective fading are quite different for slow-frequency-hop (SFN) and direct-sequence (DS) spread spectrum systems, these two types of modulation perform very differently. The purpose of this paper is to compare the performance of SFH and DS systems under identical conditions for several models of the wide-band fading channel. Each system has the same bandwidth, transmits over the same frequency-selective Gaussian wide-sense:stationary uncorrelated-stattering channel, and uses error-correction coding to combat thermal noise and fading, The probability of bit error at the output of the decoder is determined for each system by a combination of analysis and simulation. Results are presented for systems with a single transmitter-receiver pair and for networks with multiple simultaneous transmissions (i.e., multiple-access communications). The multiple-access network is distributed, so that control of power by a central terminal, such as a base station, is not possible. The results illustrate the tradeoffs in performance between SFH and DS spread-spectrum systems as a function of the parameters of the signals and the channel model. The performance of the SFH system is shown to be less sensitive to the exact characterization of the channel delay spectrum than the DS system. For most of the channels considered in this paper, SFH spread spectrum gives better performance than DS spread spectrum.
引用
收藏
页码:732 / 741
页数:10
相关论文
共 50 条