A class of explicit two-step Runge-Kutta methods with enlarged stability regions for parallel computers

被引:0
|
作者
Podhaisky, H [1 ]
Weiner, R [1 ]
机构
[1] Univ Halle Wittenberg, Inst Numer Math, D-06120 Halle, Germany
来源
PARALLEL COMPUTATION | 1999年 / 1557卷
关键词
Runge-Kutta methods; parallelism; two-step methods; stability AMS(MOS) subject classification (1991); 65M12; 65M20;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we study a class of explicit pseudo two-step Runge-Kutta (EPTRK) methods for first-order ODEs for parallel computers. We investigate linear stability and derive methods with enlarged stability regions. In numerical experiments on a shared memory computer we compare a parallel variable step size EPTRK implementation with the efficient sequential Runge-Kutta method dopri5.
引用
收藏
页码:68 / 77
页数:10
相关论文
共 50 条
  • [1] A class of explicit parallel two-step Runge-Kutta methods
    Cong N.H.
    Mitsui T.
    Japan Journal of Industrial and Applied Mathematics, 1997, 14 (2) : 303 - 313
  • [2] Explicit pseudo two-step Runge-Kutta methods for parallel computers
    Cong, NH
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1999, 73 (01) : 77 - 91
  • [3] Explicit two-step Runge-Kutta methods
    Skvortsov L.M.
    Mathematical Models and Computer Simulations, 2010, 2 (2) : 222 - 231
  • [4] A CLASS OF IMPLICIT-EXPLICIT TWO-STEP RUNGE-KUTTA METHODS
    Zharovsky, Evgeniy
    Sandu, Adrian
    Zhang, Hong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 321 - 341
  • [5] On the implementation of explicit two-step peer methods with Runge-Kutta stability
    Abdi, A.
    Hojjati, G.
    Jackiewicz, Z.
    Podhaisky, H.
    Sharifi, M.
    APPLIED NUMERICAL MATHEMATICS, 2023, 186 : 213 - 227
  • [6] Construction of two-step Runge-Kutta methods with large regions of absolute stability
    Chollom, J
    Jackiewicz, Z
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 157 (01) : 125 - 137
  • [7] On explicit two-derivative two-step Runge-Kutta methods
    Turaci, Mukaddes Okten
    Ozis, Turgut
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (05): : 6920 - 6954
  • [8] Two-step Runge-Kutta Methods with Quadratic Stability Functions
    D. Conte
    R. D’Ambrosio
    Z. Jackiewicz
    Journal of Scientific Computing, 2010, 44 : 191 - 218
  • [9] Functionally fitted explicit pseudo two-step Runge-Kutta methods
    Hoang, Nguyen S.
    Sidje, Roger B.
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (01) : 39 - 55
  • [10] STRONG STABILITY PRESERVING TWO-STEP RUNGE-KUTTA METHODS
    Ketcheson, David I.
    Gottlieb, Sigal
    Macdonald, Colin B.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2618 - 2639