Qualitative estimation of camera motion parameters from the linear composition of optical flow

被引:17
|
作者
Park, SC [1 ]
Lee, HS [1 ]
Lee, SW [1 ]
机构
[1] Korea Univ, Ctr Artificial Vis Res, Dept Comp Sci & Engn, Seongbuk Ku, Seoul 136701, South Korea
关键词
estimation of camera motion parameters; video sequences; optical flows; linear composition; linear decomposition;
D O I
10.1016/j.patcog.2003.07.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new method for estimating camera motion parameters based on optical flow models. Camera motion parameters are generated using linear combinations of optical flow models. The proposed method first creates these optical flow models, and then linear decompositions are performed on the input optical flows calculated from adjacent images in the video sequence, which are used to estimate the coefficients of each optical flow model. These coefficients are then applied to the parameters used to create each optical flow model, and the camera motion parameters implied in the adjacent images can be estimated through a linear composition of the weighted parameters. We demonstrated that the proposed method estimates the camera motion parameters accurately and at a low computational cost as well as robust to noise residing in the video sequence being analyzed. (C) 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:767 / 779
页数:13
相关论文
共 50 条
  • [1] Qualitative estimation of camera motion parameters from video sequences
    Srinivasan, MV
    Venkatesh, S
    Hosie, R
    [J]. PATTERN RECOGNITION, 1997, 30 (04) : 593 - 606
  • [2] Simultaneous estimation of optical flow and motion parameters
    Kawakami, Tomoya
    Yamaguchi, Teruo
    Harada, Hiroshi
    [J]. PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-8, 2007, : 2019 - 2024
  • [3] Robust Estimation of Camera Motion Using Optical Flow Models
    Almeida, Jurandy
    Minetto, Rodrigo
    Almeida, Tiago A.
    Torres, Ricardo da S.
    Leite, Neucimar J.
    [J]. ADVANCES IN VISUAL COMPUTING, PT 1, PROCEEDINGS, 2009, 5875 : 435 - +
  • [4] Optical flow techniques for estimation of camera motion parameters in sewer closed circuit television inspection videos
    Halfawy, Mahmoud R.
    Hengmeechai, Jantira
    [J]. AUTOMATION IN CONSTRUCTION, 2014, 38 : 39 - 45
  • [5] An Efficient Linear Method for the Estimation of Ego-Motion from Optical Flow
    Raudies, Florian
    Neumann, Heiko
    [J]. PATTERN RECOGNITION, PROCEEDINGS, 2009, 5748 : 11 - 20
  • [6] Robust Estimation of Camera Motion Parameters
    Mahyari, Mohsen Yaghobi
    Ghanbari, Mohammad
    [J]. 2014 22nd Iranian Conference on Electrical Engineering (ICEE), 2014, : 850 - 855
  • [7] Qualitative description of camera motion from histograms of normal flow
    Duric, Z
    Rivlin, E
    Rosenfeld, A
    [J]. 15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING, 2000, : 194 - 198
  • [8] Camera Parameters Aware Motion Segmentation Network with Compensated Optical Flow
    Wang, Xianshun
    Zhu, Dongchen
    Xu, Shaojie
    Shi, Wenjun
    Liu, Yanqing
    Li, Jiamao
    Zhang, Xiaolin
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 3368 - 3374
  • [9] Lucas-Kanade Optical Flow Based Camera Motion Estimation Approach
    Meng, Zelin
    Kong, Xiangbo
    Meng, Lin
    Tomiyama, Hiroyuki
    [J]. 2019 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2019, : 77 - 78
  • [10] Optical Flow Estimation for Spiking Camera
    Hu, Liwen
    Zhao, Rui
    Ding, Ziluo
    Ma, Lei
    Shi, Boxin
    Xiong, Ruiqin
    Huang, Tiejun
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 17823 - 17832