Streamlines of a perfect fluid as geodesics in Riemannian space-time

被引:0
|
作者
Verozub, L. [1 ]
机构
[1] Kharkov Karazin Univ, UA-61022 Kharkov, Ukraine
来源
GRAVITATION & COSMOLOGY | 2013年 / 19卷 / 02期
关键词
Neutron Star; Test Particle; Perfect Fluid; Compact Object; Riemannian Space;
D O I
10.1134/S0202289313020114
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Streamlines of a relativistic perfect isentropic fluid are geodesics of a Riemannian space whose metric is determined by the fluid enthalpy. This fact simplifies the solution of some problems, and is also of interest from the point of view of fundamental physics.
引用
收藏
页码:124 / 128
页数:5
相关论文
共 50 条
  • [1] Streamlines of a perfect fluid as geodesics in Riemannian space-time
    L. Verozub
    Gravitation and Cosmology, 2013, 19 : 124 - 128
  • [2] DO EXTENDED BODIES MOVE ALONG GEODESICS OF RIEMANNIAN SPACE-TIME
    DENISOV, VI
    LOGUNOV, AA
    MESTVIRISHVILI, MA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1981, 47 (01) : 281 - 301
  • [3] GEOMETRY OF STATIC PERFECT FLUID SPACE-TIME
    Costa, Johnatan
    Diógenes, Rafael
    Pinheiro, Neilha
    Ribeiro, Ernani
    arXiv, 2023,
  • [4] PERFECT FLUID IN A CONFORMALLY FLAT SPACE-TIME
    SOM, MM
    SANTOS, NO
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (01): : 191 - 197
  • [5] Geometry of static perfect fluid space-time
    Costa, J.
    Diogenes, R.
    Pinheiro, N.
    Ribeiro Jr, E.
    CLASSICAL AND QUANTUM GRAVITY, 2023, 40 (20)
  • [6] Geodesics in Lewis space-time
    Herrera, L
    Santos, NO
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (07) : 3817 - 3827
  • [7] Space-time geodesics.
    Piaggio, HTH
    NATURE, 1922, 110 : 699 - 699
  • [8] Space-Time geodesics.
    Robb, AA
    NATURE, 1922, 110 : 809 - 810
  • [9] Static perfect fluid space-time on compact manifolds
    Coutinho, F.
    Diogenes, R.
    Leandro, B.
    Ribeiro, E., Jr.
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (01)
  • [10] A condition for a perfect-fluid space-time to be a generalized Robertson-Walker space-time
    Mantica, Carlo Alberto
    Molinari, Luca Guido
    De, Uday Chand
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (02)