Higher-order Euler-type polynomials and their applications

被引:0
|
作者
Aygunes, Aykut Ahmet [1 ]
机构
[1] Akdeniz Univ, Fac Sci, Dept Math, TR-07058 Antalya, Turkey
关键词
generalized partial Hecke operators; higher-order Euler-type polynomials; higher-order Euler-type numbers; Apostol-Bernoulli polynomials; Frobenius-Euler polynomials; Euler polynomials; Euler numbers; functional equation; generating functions; GENERATING-FUNCTIONS; BERNOULLI; NUMBERS; ZETA; IDENTITIES; ANALOGS; SERIES;
D O I
10.1186/1687-1812-2013-40
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct generating functions for higher-order Euler-type polynomials and numbers. By using the generating functions, we obtain functional equations related to a generalized partial Hecke operator and Euler-type polynomials and numbers. A special case of higher-order Euler-type polynomials is eigenfunctions for the generalized partial Hecke operators. Moreover, we give not only some properties, but also applications for these polynomials and numbers.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Higher-order Euler-type polynomials and their applications
    Aykut Ahmet Aygunes
    [J]. Fixed Point Theory and Applications, 2013
  • [2] Higher-order Bernoulli, Euler and Hermite polynomials
    Kim, Dae San
    Kim, Taekyun
    Dolgy, Dmitry V.
    Rim, Seog-Hoon
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2013, : 1 - 7
  • [3] Higher-order Bernoulli, Euler and Hermite polynomials
    Dae San Kim
    Taekyun Kim
    Dmitry V Dolgy
    Seog-Hoon Rim
    [J]. Advances in Difference Equations, 2013
  • [4] Higher-order convolutions for Bernoulli and Euler polynomials
    Agoh, Takashi
    Dilcher, Karl
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (02) : 1235 - 1247
  • [5] HIGHER-ORDER BERNOULLI, FROBENIUS-EULER AND EULER POLYNOMIALS
    Kim, Dae San
    Kim, Taekyun
    Seo, Jongjin
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 17 (01) : 147 - 155
  • [6] Higher order multivariable Euler's polynomials and higher-order multivariable Bernoulli's polynomials
    Huizhou Univ, Huizhou, China
    [J]. Appl Math Mech Engl Ed, 9 (895-906):
  • [7] Fourier Series for Bernoulli-Type Polynomials, Euler-Type Polynomials and Genocchi-Type Polynomials of Integer Order
    Corcino, Cristina B.
    Corcino, Roberto B.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (04): : 1662 - 1682
  • [8] Orthogonal polynomials and connection to generalized Motzkin numbers for higher-order Euler polynomials
    Jiu, Lin
    Shi, Diane Yahui
    [J]. JOURNAL OF NUMBER THEORY, 2019, 199 : 389 - 402
  • [9] On the Higher-Order q-Euler Numbers and Polynomials with Weight α
    Hwang, K. -W.
    Dolgy, D. V.
    Kim, T.
    Lee, S. H.
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
  • [10] A second type of higher order generalized geometric polynomials and higher order generalized Euler polynomials
    Corcino, Cristina B.
    Corcino, Roberto B.
    Cekim, Bayram
    Kargin, Levent
    Nkonkobe, Sithembele
    [J]. QUAESTIONES MATHEMATICAE, 2022, 45 (01) : 71 - 89