Agnostic Approach for Microservices Autoscaling in Cloud Applications

被引:21
|
作者
Khaleq, Abeer Abdel [1 ]
Ra, Ilkyeun [1 ]
机构
[1] Univ Colorado, Dept Comp Sci & Engn, Denver, CO 80202 USA
来源
2019 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2019) | 2019年
关键词
Cloud applications; microservices scalability; Kubernetes autoscaling;
D O I
10.1109/CSCI49370.2019.00264
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cloud applications are becoming more containerized in nature. Developing a cloud application based on a microservice architecture imposes different challenges including scalability at the container level. What adds to the challenge is that applications have different QoS requirements and different characteristics requiring a customized scaling approach. In this paper, we present an agnostic approach algorithm for microservices autoscaling deployed on the Google Kubernetes Engine. Our algorithm adapts the Kubernetes autoscaling paradigm based on the application characteristics and resource requirements. Initial testing of the algorithm on different microservices requirements show an enhancement in the microservice response time up to 20% compared to the default autoscaling paradigm.
引用
收藏
页码:1411 / 1415
页数:5
相关论文
共 50 条
  • [1] Intelligent Autoscaling of Microservices in the Cloud for Real-Time Applications
    Khaleq, Abeer Abdel
    Ra, Ilkyeun
    IEEE ACCESS, 2021, 9 : 35464 - 35476
  • [2] Predictive Autoscaling Orchestration for Cloud-native Telecom Microservices
    Duc-Hung Luong
    Huu-Trung Thieu
    Outtagarts, Abdelkader
    Ghamri-Doudane, Yacine
    2018 IEEE 5G WORLD FORUM (5GWF), 2018, : 153 - 158
  • [3] A Review of Container level Autoscaling for Microservices-based Applications
    Fourati, Mohamed Hedi
    Marzouk, Soumaya
    Jmaiel, Mohamed
    2021 IEEE 30TH INTERNATIONAL CONFERENCE ON ENABLING TECHNOLOGIES: INFRASTRUCTURE FOR COLLABORATIVE ENTERPRISES (WETICE 2021), 2021, : 17 - 22
  • [4] DeepScaling: Microservices AutoScaling for Stable CPU Utilization in Large Scale Cloud Systems
    Wang, Ziliang
    Zhu, Shiyi
    Li, Jianguo
    Jiang, Wei
    Ramakrishnan, K. K.
    Zheng, Yangfei
    Yan, Meng
    Zhang, Xiaohong
    Liu, Alex X.
    PROCEEDINGS OF THE 13TH SYMPOSIUM ON CLOUD COMPUTING, SOCC 2022, 2022, : 16 - 30
  • [5] Development of QoS-aware agents with reinforcement learning for autoscaling of microservices on the cloud
    Khaleq, Abeer Abdel
    Ra, Ilkyeun
    2021 IEEE INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING AND SELF-ORGANIZING SYSTEMS COMPANION (ACSOS-C 2021), 2021, : 13 - 19
  • [6] Cdascaler: a cost-effective dynamic autoscaling approach for containerized microservices
    Shafi, Numan
    Abdullah, Muhammad
    Iqbal, Waheed
    Erradi, Abdelkarim
    Bukhari, Faisal
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (04): : 5195 - 5215
  • [7] Autoscaling Web Applications in Heterogeneous Cloud Infrastructures
    Fernandez, Hector
    Pierre, Guillaume
    Kielmann, Thilo
    2014 IEEE INTERNATIONAL CONFERENCE ON CLOUD ENGINEERING (IC2E), 2014, : 195 - 204
  • [8] DeepScaling: Autoscaling Microservices With Stable CPU Utilization for Large Scale Production Cloud Systems
    Wang, Ziliang
    Zhu, Shiyi
    Li, Jianguo
    Jiang, Wei
    Ramakrishnan, K. K.
    Yan, Meng
    Zhang, Xiaohong
    Liu, Alex X.
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2024, 32 (05) : 3961 - 3976
  • [9] Wide Area Network Autoscaling for Cloud Applications
    Serracanta, Berta
    Paillisse, Jordi
    Claiborne, Anna
    Rodriguez-Natal, Alberto
    Ward, Dave
    Maino, Fabio
    Cabellos, Albert
    PROCEEDINGS OF THE ACM SIGCOMM 2021 WORKSHOP ON NETWORK-APPLICATION INTEGRATION (NAI '21), 2021, : 1 - 6
  • [10] Multilayered Cloud Applications Autoscaling Performance Estimation
    Jindal, Anshul
    Podolskiy, Vladimir
    Gerndt, Michael
    2017 IEEE 7TH INTERNATIONAL SYMPOSIUM ON CLOUD AND SERVICE COMPUTING (SC2 2017), 2017, : 24 - 31