Generalized derivations with power-central values on multilinear polynomials

被引:14
|
作者
Wang, Y [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Jilin Normal Univ, Sch Math, Jilin 136000, Peoples R China
关键词
prime ring; extended centroid; right Utumi quotient ring; generalized derivation; multilinear polynomial; Lie ideal;
D O I
10.1142/S1005386706000344
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a prime algebra over a commutative ring K, Z and C the center and extended centroid of R, respectively, g a generalized derivation of R, and f (X-1,..., X-t) a multilinear polynomial over K. If g(f(x(1),...,x(t)))(n) is an element of Z for all x(1),...,x(t) is an element of R, then either there exists an element lambda is an element of C such that g (x) = lambda x for all x is an element of R or f (x(1),..., x(t)) is central-valued on R except when R satisfies s(4), the standard identity in four variables.
引用
收藏
页码:405 / 410
页数:6
相关论文
共 50 条