Enhanced Arabic Document Retrieval Using Optimized Query Paraphrasing

被引:2
|
作者
Al-Dayel, Abeer [1 ]
Ykhlef, Mourad [2 ]
机构
[1] King Saud Univ, Dept Informat Technol, Coll Comp & Informat Sci, Riyadh, Saudi Arabia
[2] King Saud Univ, Dept Informat Syst, Coll Comp & Informat Sci, Riyadh, Saudi Arabia
关键词
Arabic language; Arabic information retrieval; Query paraphrasing; Genetic algorithm; Artificial bee colony; EXPANSION; ALGORITHM;
D O I
10.1007/s13369-015-1797-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Query paraphrasing aims to construct a better formulation of user queries in order to enhance retrieval. Formulating search queries remains complicated for a subset of Web users. In a typical situation, a user will not receive satisfactory results from the submitted search query and will subsequently attempt different query paraphrases. The Arabic vocabulary is rich in synonyms and hyponyms. Such richness of synonyms makes automation of the paraphrasing technique crucial for Arabic information retrieval systems in order to facilitate the process of paraphrasing synonyms. In this article, we propose an enhancement for Arabic information retrieval using a query paraphrasing technique. Furthermore, two query paraphrasing optimization techniques are proposed to overcome the time complexity and exhaustive calculation of existing query paraphrasing techniques. One of these techniques uses a genetic algorithm (GA-QP), and the other employs the artificial bee colony algorithm (ABC-QP). The performance of these two algorithms is compared. ABC-QP shows an improvement in Arabic information retrieval performance compared with the genetic algorithm query paraphrasing system.
引用
收藏
页码:3211 / 3232
页数:22
相关论文
共 50 条
  • [1] Enhanced Arabic Document Retrieval Using Optimized Query Paraphrasing
    Abeer Al-Dayel
    Mourad Ykhlef
    [J]. Arabian Journal for Science and Engineering, 2015, 40 : 3211 - 3232
  • [2] Enhanced Web document retrieval using automatic query expansion
    Khan, MS
    Khor, S
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2004, 55 (01): : 29 - 40
  • [3] Experiments in query paraphrasing for information retrieval
    Zukerman, I
    Raskutti, B
    Wen, YY
    [J]. AL 2002: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2002, 2557 : 24 - 35
  • [4] Query Paraphrasing Using Genetic Approach for Intelligent Information Retrieval
    Ykhlef, Mourad
    ALDayel, Abeer
    [J]. 2012 INTERNATIONAL CONFERENCE FOR INTERNET TECHNOLOGY AND SECURED TRANSACTIONS, 2012, : 699 - 703
  • [5] Error correction vs. query garbling for Arabic OCR document retrieval
    Darwish, Kareem
    Magdy, Walid
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2008, 26 (01)
  • [6] Query expansion and query reduction in document retrieval
    Zukerman, I
    Raskutti, B
    Wen, YY
    [J]. 15TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2003, : 552 - 559
  • [7] Lexical paraphrasing and pseudo relevance feedback for biomedical document retrieval
    Muhammad Wasim
    Muhammad Nabeel Asim
    Muhammad Usman Ghani
    Zahoor Ur Rehman
    Seungmin Rho
    Irfan Mehmood
    [J]. Multimedia Tools and Applications, 2019, 78 : 29681 - 29712
  • [8] Lexical paraphrasing and pseudo relevance feedback for biomedical document retrieval
    Wasim, Muhammad
    Asim, Muhammad Nabeel
    Ghani, Muhammad Usman
    Rehman, Zahoor Ur
    Rho, Seungmin
    Mehmood, Irfan
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (21) : 29681 - 29712
  • [9] A study on using genetic niching for query optimisation in document retrieval
    Boughanem, M
    Tamine, L
    [J]. ADVANCES IN INFORMATION REFTRIEVAL, 2002, 2291 : 135 - 149
  • [10] Improving MEDLINE document retrieval using automatic query expansion
    Yoo, Sooyoung
    Choi, Jinwook
    [J]. ASIAN DIGITAL LIBRARIES: LOOKING BACK 10 YEARS AND FORGING NEW FRONTIERS, PROCEEDINGS, 2007, 4822 : 241 - 249