A surface of general type with pg=q=2 and KX2=5

被引:6
|
作者
Chen, JKA
Hacon, CD
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 106, Taiwan
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
关键词
surfaces of general type; Fourier-Mukai transform;
D O I
10.2140/pjm.2006.223.219
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an example of a minimal complex surface of general type with p(g) = q = 2 and K-X(2) = 5.
引用
收藏
页码:219 / 228
页数:10
相关论文
共 50 条
  • [1] Gorenstein stable surfaces with KX2=1 and pg > 0
    Franciosi, Marco
    Pardini, Rita
    Rollenske, Soenke
    [J]. MATHEMATISCHE NACHRICHTEN, 2017, 290 (5-6) : 794 - 814
  • [2] Maximally selected χ2 statistics for kx2 tables
    Betensky, RA
    Rabinowitz, D
    [J]. BIOMETRICS, 1999, 55 (01) : 317 - 320
  • [3] On Lucas sequence terms of the form kx2
    Ribenboim, P
    McDaniel, WL
    [J]. NUMBER THEORY, 2001, : 293 - 303
  • [4] Gorenstein stable surfaces with KX2=1 and χ(OX)=2
    Do, Anh Thi
    Rollenske, Soenke
    [J]. COMMUNICATIONS IN ALGEBRA, 2022, 50 (10) : 4218 - 4251
  • [5] Gorenstein stable surfaces with KX2=2 and χ(OX)=4
    Anthes, Ben
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2020, 21 : 1137 - 1186
  • [6] A SURFACE OF GENERAL TYPE WITH PG=Q=0, K(2)=1
    WERNER, C
    [J]. MANUSCRIPTA MATHEMATICA, 1994, 84 (3-4) : 327 - 341
  • [7] INVOLUTIONS ON A SURFACE OF GENERAL TYPE WITH pg = q=0, K2=7
    Lee, Yongnam
    Shin, YongJoo
    [J]. OSAKA JOURNAL OF MATHEMATICS, 2014, 51 (01) : 121 - 139
  • [8] Log-canonical pairs and Gorenstein stable surfaces with KX2=1
    Franciosi, Marco
    Pardini, Rita
    Rollenske, Seonke
    [J]. COMPOSITIO MATHEMATICA, 2015, 151 (08) : 1529 - 1542
  • [9] A threefold of general type with q1 = q2 = pg = P2=0
    Ronconi, MC
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2003, 75 (1-3) : 133 - 150
  • [10] A Threefold of General Type with q1=q2=pg=P2=0
    M. Cristina Ronconi
    [J]. Acta Applicandae Mathematica, 2003, 75 : 133 - 150