Superconvergence of discontinuous Galerkin methods for hyperbolic systems

被引:5
|
作者
Zhang, Tie [2 ]
Li, Jiandong [2 ]
Zhang, Shuhua [1 ,3 ,4 ]
机构
[1] Tianjin Univ Finance & Econ, Dept Math, Tianjin 300222, Peoples R China
[2] Northeastern Univ, Sch Informat Sci & Engn, Dept Math, Shenyang 110004, Peoples R China
[3] Tianjin Univ, Tianjin 300072, Peoples R China
[4] Nankai Univ, Liu Hui Ctr Appl Math, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Discontinuous finite elements; Superconvergence; Hyperbolic systems; FINITE-ELEMENT-METHOD; CONSERVATION-LAWS; CONVERGENCE;
D O I
10.1016/j.cam.2008.02.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the discontinuous Galerkin method for the positive and symmetric, linear hyperbolic systems is constructed and analyzed by using bilinear finite elements on a rectangular domain, and an O(h(2))-order superconvergence error estimate is established under the conditions of almost uniform partition and the H-3-regularity for the exact solutions, The convergence analysis is based on some superclose estimates derived in this paper. Finally, as an application, the numerical treatment of Maxwell equation is discussed and computational results are presented. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:725 / 734
页数:10
相关论文
共 50 条
  • [1] SUPERCONVERGENCE OF DISCONTINUOUS GALERKIN METHODS FOR LINEAR HYPERBOLIC EQUATIONS
    Cao, Waixiang
    Zhang, Zhimin
    Zou, Qingsong
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2555 - 2573
  • [2] SUPERCONVERGENCE OF DISCONTINUOUS GALERKIN METHODS FOR TWO-DIMENSIONAL HYPERBOLIC EQUATIONS
    Cao, Waixiang
    Shu, Chi-Wang
    Yang, Yang
    Zhang, Zhimin
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (04) : 1651 - 1671
  • [3] Superconvergence of Energy-Conserving Discontinuous Galerkin Methods for Linear Hyperbolic Equations
    Liu, Yong
    Shu, Chi-Wang
    Zhang, Mengping
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2019, 1 (01) : 101 - 116
  • [4] SUPERCONVERGENCE OF DISCONTINUOUS GALERKIN METHODS FOR LINEAR HYPERBOLIC EQUATIONS WITH SINGULAR INITIAL DATA
    Guo, Li
    Yang, Yang
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2017, 14 (03) : 342 - 354
  • [5] Superconvergence of Energy-Conserving Discontinuous Galerkin Methods for Linear Hyperbolic Equations
    Yong Liu
    Chi-Wang Shu
    Mengping Zhang
    [J]. Communications on Applied Mathematics and Computation, 2019, 1 : 101 - 116
  • [6] Superconvergence Analysis of the Runge–Kutta Discontinuous Galerkin Methods for a Linear Hyperbolic Equation
    Yuan Xu
    Xiong Meng
    Chi-Wang Shu
    Qiang Zhang
    [J]. Journal of Scientific Computing, 2020, 84
  • [7] On the superconvergence of Galerkin methods for hyperbolic IBVP
    Gottlieb, D
    Gustafsson, B
    Olsson, P
    Strand, B
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (05) : 1778 - 1796
  • [8] Superconvergence of discontinuous Galerkin method for nonstationary hyperbolic equation
    Chen, Y
    Lin, JF
    Lin, Q
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2002, 20 (04) : 429 - 436
  • [9] SUPERCONVERGENCE OF DISCONTINUOUS GALERKIN METHOD FOR NONSTATIONARY HYPERBOLIC EQUATION
    Ying Chen Jia-fu Lin Qun Lin(LSEC
    [J]. Journal of Computational Mathematics, 2002, (04) : 429 - 436
  • [10] Superconvergence Analysis of the Runge-Kutta Discontinuous Galerkin Methods for a Linear Hyperbolic Equation
    Xu, Yuan
    Meng, Xiong
    Shu, Chi-Wang
    Zhang, Qiang
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (01)