Efficient Object Annotation for Surveillance and Automotive Applications

被引:0
|
作者
Swetha, Sirnam [1 ]
Mishra, Anand [1 ]
Hegde, Guruprasad M. [2 ]
Jawahar, C. V. [1 ]
机构
[1] Int Inst Informat Technol, Hyderabad, Andhra Pradesh, India
[2] Bosch Res & Technol Ctr, Bangalore, Karnataka, India
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurately annotated large video data is critical for the development of reliable surveillance and automotive related vision solutions. In this work, we propose an efficient and yet accurate annotation scheme for objects in videos (pedestrians in this case) with minimal supervision. We annotate objects with tight bounding boxes. We propagate the annotations across the frames with a self training based approach. An energy minimization scheme for the segmentation is the central component of our method. Unlike the popular grab cut like segmentation schemes, we demand minimal user intervention. Since our annotation is built on an accurate segmentation, our bounding boxes are tight. We validate the performance of our approach on multiple publicly available datasets.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Human object annotation for surveillance video forensics
    Fraz, Muhammad
    Zafar, Iffat
    Tzanidou, Giounona
    Edirisinghe, Eran A.
    Sarfraz, Muhammad Saquib
    JOURNAL OF ELECTRONIC IMAGING, 2013, 22 (04)
  • [2] Extreme clicking for efficient object annotation
    Papadopoulos, Dim P.
    Uijlings, Jasper R. R.
    Keller, Frank
    Ferrari, Vittorio
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : CP38 - CP38
  • [3] Efficient Object Annotation via Speaking and Pointing
    Gygli, Michael
    Ferrari, Vittorio
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (05) : 1061 - 1075
  • [4] Efficient Object Annotation via Speaking and Pointing
    Michael Gygli
    Vittorio Ferrari
    International Journal of Computer Vision, 2020, 128 : 1061 - 1075
  • [5] Energy Efficient Object Detection for Automotive Applications with YOLOv3 and Approximate Hardware
    Fornt, Jordi
    Fontova-Muste, Pau
    Caro, Marti
    Abella, Jaume
    Moll, Francesc
    Altet, Josep
    Rubio, Antonio
    2023 IEEE 23RD INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY, NANO, 2023, : 592 - 595
  • [6] Crowdsourcing System for Multi-object Annotation in Surveillance Videos
    Zhang, Zheng
    Zhao, Zixin
    Zhang, Lan
    Li, Xiangyang
    2022 8TH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING AND COMMUNICATIONS, BIGCOM, 2022, : 389 - 397
  • [7] An Efficient Multiple Object Detection and Tracking Framework for Automatic Counting and Video Surveillance Applications
    del-Blanco, Carlos R.
    Jaureguizar, Fernando
    Garcia, Narciso
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2012, 58 (03) : 857 - 862
  • [8] An efficient object segmentation algorithm for surveillance systems
    Javan, Mohammad Reza
    Bouzari, Seyed Mahdi
    Salahi, Ahmad
    ISSCS 2007: INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, 2007, : 337 - +
  • [9] Stereovision-Based Object Segmentation for Automotive Applications
    Yingping Huang
    Shan Fu
    Chris Thompson
    EURASIP Journal on Advances in Signal Processing, 2005
  • [10] Stereovision-based object segmentation for automotive applications
    Huang, YP
    Fu, S
    Thompson, C
    EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2005, 2005 (14) : 2322 - 2329