Rigid quivers and rigid algebras

被引:0
|
作者
Cagliero, Leandro [1 ]
Tirao, Paulo [1 ]
机构
[1] Univ Nacl Cordoba, CIEM FaMAF, RA-5000 Cordoba, Argentina
关键词
deformations of algebras; combinatorics of quivers; Hochschild cohomology of truncated quiver algebras;
D O I
10.1016/j.jalgebra.2008.05.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a quiver to be rigid if all the associated truncated quiver algebras are rigid. The rigidity of quivers is then determined by the combinatorics of the set of pairs of parallel paths of the underlying quiver as follows from Cibils' criteria for the rigidity of truncated quiver algebras. In this paper we characterize rigid quivers Delta and relate this characterization with the condensed quiver and the quiver of beads of Delta, two much simpler quivers associated to Delta. The first one is a well-known object and the second one is introduced by us to this end. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2827 / 2846
页数:20
相关论文
共 50 条
  • [1] On rigid quivers
    Kirichenko V.V.
    Zhuravlev V.N.
    Tsyganivska I.N.
    Journal of Mathematical Sciences, 2008, 152 (2) : 209 - 219
  • [2] Rigid algebras
    Goze, M
    Bermudez, JMA
    ALGEBRA AND OPERATOR THEORY, 1998, : 65 - 91
  • [3] Isomorphically rigid algebras
    K. N. Ponomarev
    Algebra and Logic, 2007, 46 : 263 - 273
  • [4] RIGID MONOMIAL ALGEBRAS
    CIBILS, C
    MATHEMATISCHE ANNALEN, 1991, 289 (01) : 95 - 109
  • [5] Isomorphically rigid algebras
    Ponomarev, K. N.
    ALGEBRA AND LOGIC, 2007, 46 (04) : 263 - 273
  • [6] A CHARACTERIZATION OF RIGID ALGEBRAS
    PAGE, SS
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1970, 2 (06): : 237 - &
  • [7] RIGID BOOLEAN ALGEBRAS
    BONNET, R
    JOURNAL OF SYMBOLIC LOGIC, 1979, 44 (03) : 443 - 443
  • [8] Rigid Division Algebras
    Ponomarev, K. N.
    ALGEBRA AND LOGIC, 2014, 52 (06) : 471 - 483
  • [9] RIGID ANALYTICAL ALGEBRAS
    STORCH, U
    MATHEMATISCHE ANNALEN, 1968, 179 (01) : 53 - &
  • [10] Rigid Division Algebras
    K. N. Ponomarev
    Algebra and Logic, 2014, 52 : 471 - 483