An Approach to Stochastic Integration in General Separable Banach Spaces

被引:3
|
作者
Kalinichenko, A. A. [1 ]
机构
[1] Moscow Inst Phys & Technol, Moscow, Russia
关键词
Infinite-dimensional stochastic analysis; Stochastic integral; Stochastic differential equations; Gaussian measures;
D O I
10.1007/s11118-018-9696-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We suggest a new approach to stochastic integration in infinite-dimensional spaces that is based on representing random variables on Banach spaces as real-valued processes on an interval. We prove stochastic integrability of operator-valued processes on general separable Banach spaces under the conditions that do not depend on the norm of the space and show how our methods can be applied to studying infinite-dimensional stochastic differential equations. In particular, our results provide a natural construction of the stochastic integral in abstract Wiener spaces.
引用
收藏
页码:591 / 608
页数:18
相关论文
共 50 条
  • [1] An Approach to Stochastic Integration in General Separable Banach Spaces
    A. A. Kalinichenko
    [J]. Potential Analysis, 2019, 50 : 591 - 608
  • [2] Vector integration and stochastic integration in Banach spaces
    Dinculeanu, Nicolae
    [J]. FUNCTIONAL AND OPERATORIAL STATISTICS, 2008, : 151 - 156
  • [3] STOCHASTIC INTEGRATION IN BANACH-SPACES
    BROOKS, JK
    DINCULEANU, N
    [J]. ADVANCES IN MATHEMATICS, 1990, 81 (01) : 99 - 104
  • [4] Poisson stochastic integration in Banach spaces
    Dirksen, Sjoerd
    Maas, Jan
    van Neerven, Jan
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 28
  • [5] Stochastic integration in UMD Banach spaces
    van Neerven, J. M. A. M.
    Veraar, M. C.
    Weis, L.
    [J]. ANNALS OF PROBABILITY, 2007, 35 (04): : 1438 - 1478
  • [6] Stochastic Integration in Banach Spaces - a Survey
    van Neerven, Jan
    Veraar, Mark
    Weis, Lutz
    [J]. STOCHASTIC ANALYSIS: A SERIES OF LECTURES, 2015, 68 : 297 - 332
  • [7] Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem
    Brzezniak, Z
    van Neerven, J
    [J]. STUDIA MATHEMATICA, 2000, 143 (01) : 43 - 74
  • [8] SEPARABLE BANACH SPACES CONTAINING ALL SEPARABLE REFLEXIVE BANACH SPACES
    WOJTASZCAZYK, P
    [J]. STUDIA MATHEMATICA, 1971, 37 (02) : 197 - +
  • [9] Stochastic integration in quasi-Banach spaces
    Cioica-Licht, Petru A.
    Cox, Sonja G.
    Veraar, Mark C.
    [J]. STUDIA MATHEMATICA, 2023, 269 (01) : 1 - 64
  • [10] Stochastic integration for Levy processes with values in Banach spaces
    Riedle, Markus
    van Gaans, Onno
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (06) : 1952 - 1974