Tseng's extragradient algorithm for pseudomonotone variational inequalities on Hadamard manifolds

被引:7
|
作者
Fan, Jingjing [1 ]
Qin, Xiaolong [2 ]
Tan, Bing [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Hangzhou, Zhejiang, Peoples R China
关键词
Pseudomonotone vector field; variational inequality; extragradient algorithm; non-Lipschitzian; Hadamard manifold; PROXIMAL POINT ALGORITHM; MONOTONE VECTOR-FIELDS; RIEMANNIAN-MANIFOLDS; NEWTONS METHOD; DESCENT METHOD; OPERATORS; MAPPINGS;
D O I
10.1080/00036811.2020.1807012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the Tseng's extragradient algorithm for non-Lipschitzian variational inequalities with pseudomonotone vector fields on Hadamard manifolds. The convergence analysis of the proposed algorithm is discussed under mild assumptions. Two experiments are provided to illustrate the asymptotical behavior of the algorithm. The results presented in this paper generalize some known results presented in the literature.
引用
收藏
页码:2372 / 2385
页数:14
相关论文
共 50 条
  • [1] New Tseng's extragradient methods for pseudomonotone variational inequality problems in Hadamard manifolds
    Khammahawong, Konrawut
    Kumam, Poom
    Chaipunya, Parin
    Plubtieng, Somyot
    [J]. FIXED POINT THEORY AND ALGORITHMS FOR SCIENCES AND ENGINEERING, 2021, 2021 (01):
  • [2] Parallel Tseng's Extragradient Methods for Solving Systems of Variational Inequalities on Hadamard Manifolds
    Ceng, Lu-Chuan
    Shehu, Yekini
    Wang, Yuanheng
    [J]. SYMMETRY-BASEL, 2020, 12 (01):
  • [3] CONVERGENCE ANALYSIS OF AN INERTIAL TSENG'S EXTRAGRADIENT ALGORITHM FOR SOLVING PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND APPLICATIONS
    Liu, Liya
    Cho, Sun Young
    Yao, Jen-Chih
    [J]. JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (04): : 627 - 644
  • [4] Modified Tseng's extragradient methods for variational inequality on Hadamard manifolds
    Chen, Junfeng
    Liu, Sanyang
    Chang, Xiaokai
    [J]. APPLICABLE ANALYSIS, 2021, 100 (12) : 2627 - 2640
  • [5] The proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds
    Guo-ji Tang
    Li-wen Zhou
    Nan-jing Huang
    [J]. Optimization Letters, 2013, 7 : 779 - 790
  • [6] The proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds
    Tang, Guo-ji
    Zhou, Li-wen
    Huang, Nan-jing
    [J]. OPTIMIZATION LETTERS, 2013, 7 (04) : 779 - 790
  • [7] Three novel inertial explicit Tseng's extragradient methods for solving pseudomonotone variational inequalities
    Rehman, Habib Ur
    Kumam, Poom
    Ozdemir, Murat
    Argyros, Ioannis K.
    Kumam, Wiyada
    [J]. OPTIMIZATION, 2022, 71 (16) : 4697 - 4730
  • [8] AN EXTRAGRADIENT ALGORITHM FOR STRONGLY PSEUDOMONOTONE EQUILIBRIUM PROBLEMS ON HADAMARD MANIFOLDS
    Khammahawong, Konrawut
    Kumam, Poom
    Chaipunya, Parin
    Yao, Jen-Chih
    Wen, Ching-Feng
    Jirakitpuwapat, Wachirapong
    [J]. THAI JOURNAL OF MATHEMATICS, 2020, 18 (01): : 350 - 371
  • [9] An extragradient algorithm for solving bilevel pseudomonotone variational inequalities
    Anh, P. N.
    Kim, J. K.
    Muu, L. D.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2012, 52 (03) : 627 - 639
  • [10] An extragradient algorithm for solving bilevel pseudomonotone variational inequalities
    P. N. Anh
    J. K. Kim
    L. D. Muu
    [J]. Journal of Global Optimization, 2012, 52 : 627 - 639