Perturbative Quantum Gauge Theories on Manifolds with Boundary

被引:52
|
作者
Cattaneo, Alberto S. [1 ]
Mnev, Pavel [2 ,3 ,4 ]
Reshetikhin, Nicolai [5 ,6 ,7 ]
机构
[1] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[2] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
[3] Russian Acad Sci, VA Steklov Inst Math, St Petersburg Dept, Fontanka 27, St Petersburg 191023, Russia
[4] Univ Notre Dame, 255 Hurley, Notre Dame, IN 46556 USA
[5] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[6] St Petersburg Univ, Dept Phys, St Petersburg, Russia
[7] Univ Amsterdam, KdV Inst Math, Pk 904, NL-1098 XH Amsterdam, Netherlands
基金
瑞士国家科学基金会;
关键词
DEFORMATION-THEORY; QUANTIZATION; GEOMETRY; TORSION; REPRESENTATIONS; FORMALISM; FORMS;
D O I
10.1007/s00220-017-3031-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper introduces a general perturbative quantization scheme for gauge theories on manifolds with boundary, compatible with cutting and gluing, in the cohomological symplectic (BV-BFV) formalism. Explicit examples, like abelian BF theory and its perturbations, including nontopological ones, are presented.
引用
收藏
页码:631 / 730
页数:100
相关论文
共 50 条
  • [1] Perturbative Quantum Gauge Theories on Manifolds with Boundary
    Alberto S. Cattaneo
    Pavel Mnev
    Nicolai Reshetikhin
    [J]. Communications in Mathematical Physics, 2018, 357 : 631 - 730
  • [2] Gauge theories on manifolds with boundary
    Avramidi, IG
    Esposito, G
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (03) : 495 - 543
  • [3] Gauge Theories on Manifolds with Boundary
    Ivan G. Avramidi
    Giampiero Esposito
    [J]. Communications in Mathematical Physics, 1999, 200 : 495 - 543
  • [4] Spin-2 quantum gauge theories and perturbative gauge invariance
    Scharf, G
    Wellmann, M
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2001, 33 (03) : 553 - 590
  • [5] Spin-2 Quantum Gauge Theories and Perturbative Gauge Invariance
    Günter Scharf
    Mark Wellmann
    [J]. General Relativity and Gravitation, 2001, 33 : 553 - 590
  • [6] Non-Abelian gauge theories as a consequence of perturbative quantum gauge invariance
    Aste, A
    Scharf, G
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (21): : 3421 - 3432
  • [7] PERTURBATIVE GAUGE-THEORIES
    BAULIEU, L
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 129 (01): : 1 - 74
  • [8] Non-perturbative effective action in gauge theories and quantum gravity
    Avramidi, Ivan G.
    [J]. ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 14 (01) : 309 - 333
  • [9] TOPOLOGICAL QUANTUM-FIELD THEORIES ON MANIFOLDS WITH A BOUNDARY
    WU, SY
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 136 (01) : 157 - 168
  • [10] The infrared structure of perturbative gauge theories
    Agarwal, Neelima
    Magnea, Lorenzo
    Signorile-Signorile, Chiara
    Tripathi, Anurag
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2023, 994 : 1 - 120