On a Class of Non-Markovian Langevin Equations

被引:0
|
作者
Lizama, Carlos [1 ]
Rebolledo, Rolando [2 ]
机构
[1] Univ Santiago Chile, Fac Ciencia, Dept Matemat, Santiago, Chile
[2] Pontificia Univ Catolica Chile, Fac Matemat, Fac Ingn, Santiago, Chile
来源
OPEN SYSTEMS & INFORMATION DYNAMICS | 2013年 / 20卷 / 04期
关键词
DIFFUSION;
D O I
10.1142/S1230161213500169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a generalized Langevin's equation for a small classical mechanical system embedded in a reservoir. The interaction of the main system with the reservoir is given by a Gaussian transform as introduced in our previous paper [8]. Thus, a first result proves the existence of a strong solution to this equation in the space where the Gaussian transform (or non-Markovian noise) is defined. The interpretation of the noise is obtained by considering a finite number n of oscillating particles with discrete frequencies in the reservoir. The action of this discrete reservoir on the small system is described by a memory kernel and a sequence of zero-mean Gaussian processes. So, an integro-differential equation for the evolution of a generic particle in the main system arises for each n. This equation has a unique solution X-n which converges in distribution towards the solution of the initial non-Markovian Langevin's equation.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Stochastic Langevin equations: Markovian and non-Markovian dynamics
    Farias, R. L. S.
    Ramos, Rudnei O.
    da Silva, L. A.
    [J]. PHYSICAL REVIEW E, 2009, 80 (03):
  • [2] NEW APPROACH TO NON-MARKOVIAN LANGEVIN-EQUATIONS
    NISHIGORI, T
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1979, 62 (04): : 1156 - 1158
  • [3] Quantum non-Markovian Langevin equations and transport coefficients
    V. V. Sargsyan
    Z. Kanokov
    G. G. Adamian
    N. V. Antonenko
    [J]. Physics of Atomic Nuclei, 2005, 68 : 2009 - 2021
  • [4] Quantum non-Markovian Langevin equations and transport coefficients
    Sargsyan, VV
    Kanokov, Z
    Adamian, GG
    Antonenko, NV
    [J]. PHYSICS OF ATOMIC NUCLEI, 2005, 68 (12) : 2009 - 2021
  • [5] Quantum non-Markovian Langevin equations and transport coefficients for an inverted oscillator
    V. V. Sargsyan
    Z. Kanokov
    G. G. Adamyan
    N. V. Antonenko
    [J]. Theoretical and Mathematical Physics, 2008, 156 : 1331 - 1346
  • [6] Quantum non-Markovian Langevin equations and transport coefficients for an inverted oscillator
    Sargsyan, V. V.
    Kanokov, Z.
    Adamyan, G. G.
    Antonenko, N. V.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2008, 156 (03) : 1331 - 1346
  • [7] CORRELATION-FUNCTIONS AND MASTER-EQUATIONS OF GENERALIZED (NON-MARKOVIAN) LANGEVIN EQUATIONS
    HANGGI, P
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1978, 31 (04): : 407 - 416
  • [8] Ergodic Properties of the Non-Markovian Langevin Equation
    VOJKAN JAKIŠĆ
    CLAUDE-ALAIN PILLET
    [J]. Letters in Mathematical Physics, 1997, 41 (1) : 49 - 57
  • [9] Test particles in a gas: Markovian and non-Markovian Langevin dynamics
    Ferrari, Leonardo
    [J]. CHEMICAL PHYSICS, 2019, 523 : 42 - 51
  • [10] Ergodic properties of the non-Markovian Langevin equation
    Jaksic, V
    Pillet, CA
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1997, 41 (01) : 49 - 57