SARS n-CoV2-19 detection from chest x-ray images using deep neural networks

被引:14
|
作者
Pandit, Mohammad Khalid [1 ]
Banday, Shoaib Amin [1 ]
机构
[1] Islamic Univ Sci & Technol, AI & ML Grp, Pulwama, India
关键词
Deep learning; X-ray; Transfer learning; SARS n-CoV2; Novel coronavirus;
D O I
10.1108/IJPCC-06-2020-0060
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Purpose Novel coronavirus is fast spreading pathogen worldwide and is threatening billions of lives. SARS n-CoV2 is known to affect the lungs of the COVID-19 positive patients. Chest x-rays are the most widely used imaging technique for clinical diagnosis due to fast imaging time and low cost. The purpose of this study is to use deep learning technique for automatic detection of COVID-19 using chest x-rays. Design/methodology/approach The authors used a data set containing confirmed COVID-19 positive, common bacterial pneumonia and healthy cases (no infection). A collection of 1,428 x-ray images is used in this study. The authors used a pre-trained VGG-16 model for the classification task. Transfer learning with fine-tuning was used in this study to effectively train the network on a relatively small chest x-ray data set. Initial experiments show that the model achieves promising results and can be greatly used to expedite COVID-19 detection. Findings The authors achieved an accuracy of 96% and 92.5% in two and three output class cases, respectively. Based on these findings, the medical community can access using x-ray images as possible diagnostic tool for faster COVID-19 detection to complement the already testing and diagnosis methods. Originality/value The proposed method can be used as initial screening which can help health-care professionals to better treat the COVID patients by timely detecting and screening the presence of disease.
引用
收藏
页码:419 / 427
页数:9
相关论文
共 50 条
  • [1] Deep Learning Convolutional Neural Network for SARS-CoV-2 Detection Using Chest X-Ray Images
    Ahmed, Ali Mohammed Saleh
    Khudhair, Inteasar Yaseen
    Noaman, Salam Abdulkhaleq
    ACTA INFORMATICA PRAGENSIA, 2023, 12 (01) : 71 - 86
  • [2] Detection of COVID-19 from Chest X-ray Images Using Deep Convolutional Neural Networks
    Khasawneh, Natheer
    Fraiwan, Mohammad
    Fraiwan, Luay
    Khassawneh, Basheer
    Ibnian, Ali
    SENSORS, 2021, 21 (17)
  • [3] SARS-CoV-2 Detection Using Chest X-Ray Images with Deep Learning Methods
    Aydogan, Ediz
    Genc, Abdullah
    Bilgin, Gokhan
    2022 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO'22), 2022,
  • [4] Rapid detection of COVID-19 from chest X-ray images using deep convolutional neural networks
    Panigrahi, Sweta
    Raju, U. S. N.
    Pathak, Debanjan
    Kadambari, K. V.
    Ala, Harika
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2023, 41 (01) : 1 - 15
  • [5] Deep Convolutional Neural Networks for COVID-19 Detection from Chest X-Ray Images Using ResNetV2
    Rakhymzhan, Tomiris
    Zarrin, Javad
    Maktab-Dar-Oghaz, Mahdi
    Saheer, Lakshmi Babu
    INTELLIGENT COMPUTING, VOL 2, 2022, 507 : 106 - 116
  • [6] Detection of COVID-19 from X-Ray Images using Deep Neural Networks
    Gupta, Eesha
    Mathur, Pratistha
    Srivastava, Devesh Kumar
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 722 - 728
  • [7] Detection of COVID-19 from Chest X-Ray Images Using Convolutional Neural Networks
    Sekeroglu, Boran
    Ozsahin, Ilker
    SLAS TECHNOLOGY, 2020, 25 (06): : 553 - 565
  • [8] Pneumonia Detection on Chest X-ray Images Using Ensemble of Deep Convolutional Neural Networks
    Mabrouk, Alhassan
    Diaz Redondo, Rebeca P.
    Dahou, Abdelghani
    Abd Elaziz, Mohamed
    Kayed, Mohammed
    APPLIED SCIENCES-BASEL, 2022, 12 (13):
  • [9] Detection and classification of lung nodules in chest X-ray images using deep convolutional neural networks
    Mendoza, Julio
    Pedrini, Helio
    COMPUTATIONAL INTELLIGENCE, 2020, 36 (02) : 370 - 401
  • [10] Detecting Covid19 and pneumonia from chest X-ray images using deep convolutional neural networks
    Kavya, Nallamothu Sri
    Shilpa, Thotapalli
    Veeranjaneyulu, N.
    Priya, D. Divya
    MATERIALS TODAY-PROCEEDINGS, 2022, 64 : 737 - 743