A dynamic multiscale lifting computation method using Daubechies wavelet

被引:23
|
作者
Chen, XF [1 ]
He, ZJ [1 ]
Xiang, JW [1 ]
Li, B [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Sch Mech Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Daubechies wavelet; multiscale; connection coefficients;
D O I
10.1016/j.cam.2005.04.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An important property of wavelet multiresolution analysis is the capability to represent functions in a dynamic multiscale manner, so the solution in the wavelet domain enables a hierarchical approximation to the exact. solution. The typical problem that arises when using Daubechies wavelets in numerical analysis, especially in finite element analysis, is how to calculate the connection coefficients, an integral of products of wavelet scaling functions or derivative operators associated with these. The method to calculate multiscale connection coefficients for stiffness matrices and load vectors is presented for the first time. And the algorithm of multiscale lifting computation is developed. The numerical examples are given to verify the effectiveness of such a method. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:228 / 245
页数:18
相关论文
共 50 条
  • [1] Daubechies wavelet construction using homotopy method
    Wang Yan
    Liang Dequn
    Wang Baisuo
    CHINESE JOURNAL OF ELECTRONICS, 2007, 16 (01): : 93 - 96
  • [2] Daubechies wavelet construction using continuation method
    Wang, Yan
    Liang, De-Qun
    Wang, Bai-Suo
    WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING, VOL 1 AND 2, 2006, : 813 - +
  • [3] Image Fusion using Daubechies Complex Wavelet Transform and Lifting Wavelet Transform: a Multiresolution Approach
    Thomas, Elizabeth
    Nair, Praseeda B.
    John, Sherin N.
    Dominic, Merry
    2014 ANNUAL INTERNATIONAL CONFERENCE ON EMERGING RESEARCH AREAS: MAGNETICS, MACHINES AND DRIVES (AICERA/ICMMD), 2014,
  • [4] DETECTION OF DYSPLASIA FROM ENDOSCOPIC IMAGES USING DAUBECHIES 2 WAVELET LIFTING WAVELET TRANSFORM
    Takeda, Hiroaki
    Minamoto, Teruya
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2019, : 116 - 121
  • [5] Parallel Computation of Wavelet Transforms Using the Lifting Scheme
    Patricia González
    José C. Cabaleiro
    Tomás F. Pena
    The Journal of Supercomputing, 2001, 18 : 141 - 152
  • [6] Parallel computation of wavelet transforms using the lifting scheme
    González, P
    Cabaleiro, JC
    Pena, TF
    JOURNAL OF SUPERCOMPUTING, 2001, 18 (02): : 141 - 152
  • [7] Discrete wavelet transforms using Daubechies wavelet
    Umamaheswar Rao, I.
    2001, Inst. of Electronics and Telecommunication Engineers (47) : 3 - 4
  • [8] Discrete wavelet transforms using Daubechies wavelet
    Rao, IU
    IETE JOURNAL OF RESEARCH, 2001, 47 (3-4) : 169 - 171
  • [9] Efficient sensor node connectivity and target coverage using genetic algorithm with Daubechies 4 lifting wavelet transform
    Ganesan, T.
    Rajarajeswari, Pothuraju
    INTERNATIONAL JOURNAL OF COMMUNICATION NETWORKS AND DISTRIBUTED SYSTEMS, 2022, 28 (03) : 337 - 364
  • [10] An image watermarking method using the lifting wavelet transform
    Miyazaki, Akio
    Uchiyama, Fumihiro
    2006 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATIONS, VOLS 1 AND 2, 2006, : 139 - +