A Review and Perspective for the Development of Triboelectric Nanogenerator (TENG)-Based Self-Powered Neuroprosthetics

被引:29
|
作者
Wang, Hao [1 ]
Wu, Tianzhun [1 ,2 ]
Zeng, Qi [1 ]
Lee, Chengkuo [3 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol SIAT, Inst Biomed & Hlth Engn, Shenzhen 518035, Peoples R China
[2] Chinese Acad Sci, Key Lab Hlth Bioinformat, Shenzhen 518035, Peoples R China
[3] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
关键词
triboelectric nanogenerator (TENG); self-powered neuroprosthetics; thin-film; Bennet's doubler; high-frequency switch; implantable device; WATER-WAVE ENERGY; MECHANICAL ENERGY; WIND ENERGY; SENSOR; INTERFACE; TECHNOLOGY; CONTACT; MODULATION; GENERATION; DENSITY;
D O I
10.3390/mi11090865
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Neuroprosthetics have become a powerful toolkit for clinical interventions of various diseases that affect the central nervous or peripheral nervous systems, such as deep brain stimulation (DBS), functional electrical stimulation (FES), and vagus nerve stimulation (VNS), by electrically stimulating different neuronal structures. To prolong the lifetime of implanted devices, researchers have developed power sources with different approaches. Among them, the triboelectric nanogenerator (TENG) is the only one to achieve direct nerve stimulations, showing great potential in the realization of a self-powered neuroprosthetic system in the future. In this review, the current development and progress of the TENG-based stimulation of various kinds of nervous systems are systematically summarized. Then, based on the requirements of the neuroprosthetic system in a real application and the development of current techniques, a perspective of a more sophisticated neuroprosthetic system is proposed, which includes components of a thin-film TENG device with a biocompatible package, an amplification circuit to enhance the output, and a self-powered high-frequency switch to generate high-frequency current pulses for nerve stimulations. Then, we review and evaluate the recent development and progress of each part.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Self-Powered Pedometer Based on Triboelectric Nanogenerator
    Liu, Yan
    Ouyang, Han
    Liu, Zhuo
    Zou, Yang
    Zhao, Lu-Ming
    Tian, Jing-Jing
    Li, Ming
    Jiang, Wen
    Li, Zhou
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2017, 46 (05): : 790 - 794
  • [2] Self-Powered Magnetic Sensor Based on a Triboelectric Nanogenerator
    Yang, Ya
    Lin, Long
    Zhang, Yue
    Jing, Qingshen
    Hou, Te-Chien
    Wang, Zhong Lin
    ACS NANO, 2012, 6 (11) : 10378 - 10383
  • [3] Self-powered pressure sensors based on triboelectric nanogenerator
    Xu, Mengfei
    Tao, Kai
    Chen, Zhensheng
    Chen, Hao
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 3498 - 3501
  • [4] Triboelectric Nanogenerator Based Self-Powered Tilt Sensor
    Iqbal, Faisal
    Shafi, Muhammad
    Khattak, Muhammad Irfan
    Nawaz, Aamir
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2018, 25 (02): : 325 - 328
  • [5] Self-Powered Humidity Sensor based on Triboelectric Nanogenerator
    Su, Yuanjie
    Xie, Guangzhong
    Wang, Si
    Tai, Huiling
    Zhang, Qiuping
    Du, Hongfei
    Du, Xiaosong
    Jiang, Yadong
    2017 IEEE SENSORS, 2017, : 1212 - 1214
  • [6] Self-Powered Triboelectric Nanogenerator for Security Applications
    Munirathinam, Prabavathi
    Chandrasekhar, Arunkumar
    MICROMACHINES, 2023, 14 (03)
  • [7] Triboelectric nanogenerator as self-powered impact sensor
    Garcia, Cristobal
    Trendafilova, Irina
    Guzman de Villoria, Roberto
    Sanchez del Rio, Jose
    INTERNATIONAL CONFERENCE ON ENGINEERING VIBRATION (ICOEV 2017), 2018, 148
  • [8] Triboelectric Nanogenerator for Self-Powered Gas Sensing
    Zhang, Dongzhi
    Zhou, Lina
    Wu, Yan
    Yang, Chunqing
    Zhang, Hao
    SMALL, 2024, 20 (51)
  • [9] Triboelectric nanogenerator for self-powered traffic monitoring
    Behera, Swayam Aryam
    Kim, Hang-Gyeom
    Jang, Il Ryu
    Hajra, Sugato
    Panda, Swati
    Vittayakorn, Naratip
    Kim, Hoe Joon
    Achary, P. Ganga Raju
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2024, 303
  • [10] Self-powered liquid crystal lens based on a triboelectric nanogenerator
    Chen, Wandi
    Wang, Wenwen
    Li, Shiyao
    Kang, Jiaxin
    Zhang, Yongai
    Yan, Qun
    Guo, Tailiang
    Zhou, Xiongtu
    Wu, Chaoxing
    NANO ENERGY, 2023, 107