Gear life and operation are largely determined by the properties of the contacting surfaces, which inevitably change over the gear life. The initial topography transformation, a characteristic effect of running-in, is very important. This paper focuses on how the running-in of the surface topography can be characterized and what methodology can be used for this purpose. To characterize running-in, gears were run in an FZG back-to-back test rig and the changes in surface topography were measured in situ using a Form Talysurf Intra. This enables the same gear tooth surface to be measured with enough precision to follow its development through the different stages of running-in. Gear tooth surfaces as manufactured were measured on three occasions: in initial manufactured condition, after a standard running-in procedure, and after an efficiency test. Running-in was characterized both qualitatively by plotting roughness profiles and quantitatively by analyzing a selected set of roughness parameters. This paper demonstrates that: the asperity peaks were worn off in the initial running-in stage; roughness, waviness, and form can be separated using a carefully chosen polynomial fit and the Gaussian filter; surface topography can be examined initially, after running-in, and after operation in situ; and complete wear of the initial surface can be observed in specific circumstances. (C) 2015 Elsevier B.V. All rights reserved.