Dynamic Mechanical Analysis on a PolyMethyl Methacrylate (PMMA) Polymer Optical Fiber

被引:63
|
作者
Leal-Junior, Arnaldo G. [1 ]
Marques, Carlos [2 ,3 ,4 ]
Frizera, Anselmo [1 ]
Pontes, Maria Jose [1 ]
机构
[1] Univ Fed Espirito Santo, Grad Program Elect Engn, BR-29075910 Vitoria, Brazil
[2] Univ Aveiro, Inst Telecomunicacoes, P-3810193 Aveiro, Portugal
[3] Univ Aveiro, Phys Dept, P-3810193 Aveiro, Portugal
[4] Univ Aveiro, I3N, P-3810193 Aveiro, Portugal
关键词
Polymer optical fiber; curvature sensor; viscoelasticity; dynamic mechanical analysis; HIGH-TEMPERATURE; STRAIN SENSORS; BRAGG GRATINGS; HUMIDITY; FABRICATION; BEHAVIOR; TOPAS; FBGS;
D O I
10.1109/JSEN.2018.2797086
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Curvature sensors based on polymer optical fibers (POFs) present some advantages over the conventional technologies for joint angle assessment such as compactness, electromagnetic field immunity, and multiplexing capabilities. However, the polymer is a viscoelastic material, which does not have a constant response with stress or strain. In order to understand and model this effect, this paper presents the dynamic characterization of a POF. The effects of temperature, frequency, and loads on the fiber are analyzed for obtaining the influence of these parameters on the polymer dynamic Young modulus and time constant. Results show that a temperature on the range between 24 degrees C and 45 degrees C does not lead to considerable variations on the sensor output. Moreover, it is possible to estimate the storage modulus and loss factor from the frequency and temperature. The polymer time constant is defined on creep recovery experiments. Since the viscoelastic parameters are evaluated in different conditions of temperature, frequency, and load, a model for the stress behavior of the fiber is proposed. Such model leads to a root mean squared error between the modeled and measured results over 15 times lower than the one obtained with the model for bending stress without account the POF viscoelastic behavior.
引用
收藏
页码:2353 / 2361
页数:9
相关论文
共 50 条
  • [1] Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems
    Prado, Adilson R.
    Leal-Junior, Arnaldo G.
    Marques, Carlos
    Leite, Samara
    De Sena, Geovane L.
    Machado, Luiz C.
    Frizera, Anselmo
    Ribeiro, Moises R. N.
    Pontes, Maria Jose
    OPTICS EXPRESS, 2017, 25 (24): : 30051 - 30060
  • [2] Polymethyl methacrylate (PMMA)
    Kunsts Plast Eur, 10 (33-35):
  • [3] Polymethyl methacrylate (PMMA)
    Albrecht, K
    Blass, R
    Brand, N
    Schäfer, J
    Wolf, S
    KUNSTSTOFFE-PLAST EUROPE, 1999, 89 (10): : 76 - 78
  • [4] Polymethyl methacrylate (PMMA)
    不详
    KUNSTSTOFFE-PLAST EUROPE, 2004, 94 (10): : 109 - 112
  • [5] Polymethyl methacrylate (PMMA).
    Geissler, C
    Albrecht, K
    Wunderlich, W
    KUNSTSTOFFE-PLAST EUROPE, 1996, 86 (10): : 1484 - &
  • [6] Polymethyl methacrylate (PMMA)
    Albrecht, K.
    Blass, R.
    Träxler, M.
    Kunststoffe Plast Europe, 2001, 91 (10): : 119 - 121
  • [7] Polymethyl methacrylate (PMMA)
    Albrecht, K
    Schäfer, M
    Träxler, M
    KUNSTSTOFFE-PLAST EUROPE, 2002, 92 (10): : 116 - +
  • [8] The Effect of Polymethyl Methacrylate (PMMA) for the Fabrication of Polyacrylonitrile (PAN) Fiber
    Lin Hui Min
    Rong Hai Qin
    Zhao Shu Hui
    ADVANCES IN CHEMICAL, MATERIAL AND METALLURGICAL ENGINEERING, PTS 1-5, 2013, 634-638 : 2583 - 2587
  • [9] Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core
    Saez-Rodriguez, D.
    Nielsen, K.
    Rasmussen, H. K.
    Bang, O.
    Webb, D. J.
    OPTICS LETTERS, 2013, 38 (19) : 3769 - 3772
  • [10] Photolithography with polymethyl methacrylate (PMMA)
    Carbaugh, Daniel J.
    Wright, Jason T.
    Parthiban, Rajan
    Rahman, Faiz
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2016, 31 (02)