On correlations of certain multiplicative functions
被引:0
|
作者:
Balasubramanian, R.
论文数: 0引用数: 0
h-index: 0
机构:
Inst Math Sci, Chennai 600113, Tamil Nadu, India
Homi Bhabha Natl Inst, Training Sch Complex,Anushakti Nagar, Mumbai 400094, Maharashtra, IndiaInst Math Sci, Chennai 600113, Tamil Nadu, India
Balasubramanian, R.
[1
,2
]
Giri, Sumit
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Sch Math, POB 39040, Tel Aviv, IsraelInst Math Sci, Chennai 600113, Tamil Nadu, India
Giri, Sumit
[3
]
Srivastav, Priyamvad
论文数: 0引用数: 0
h-index: 0
机构:
Inst Math Sci, Chennai 600113, Tamil Nadu, India
Homi Bhabha Natl Inst, Training Sch Complex,Anushakti Nagar, Mumbai 400094, Maharashtra, IndiaInst Math Sci, Chennai 600113, Tamil Nadu, India
Srivastav, Priyamvad
[1
,2
]
机构:
[1] Inst Math Sci, Chennai 600113, Tamil Nadu, India
[2] Homi Bhabha Natl Inst, Training Sch Complex,Anushakti Nagar, Mumbai 400094, Maharashtra, India
[3] Tel Aviv Univ, Sch Math, POB 39040, Tel Aviv, Israel
Asymptotic results on arithmetic functions;
Product of shifted multiplicative functions;
D O I:
10.1016/j.jnt.2016.10.001
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we study sums of shifted products Sigma(n <= x) F(n)G(n-h) for any vertical bar h vertical bar <= x/2 and arithmetic functions F = f * 1 and G = g * 1, with f and g small. We obtain asymptotic formula for different orders of magnitude of f and g. We also provide asymptotic formula for sums of the type Sigma(n <= x) mu(2)(n)G(n - h), where G = g *1 and g is small. For small order of magnitudes of f and g, we improve the error terms and make them independent of h. (C) 2016 Elsevier Inc. All rights reserved.
机构:
Inst Math Sci, CIT Campus, Madras 600113, Tamil Nadu, India
Homi Bhabha Natl Inst, Training Sch Complex, Bombay 400094, Maharashtra, IndiaInst Math Sci, CIT Campus, Madras 600113, Tamil Nadu, India
机构:
GESAMT HSCH PADERBORN,FACHBEREICH MATH INFORMATIK,D-4790 PADERBORN,BUNDES REPUBLIKGESAMT HSCH PADERBORN,FACHBEREICH MATH INFORMATIK,D-4790 PADERBORN,BUNDES REPUBLIK
INDLEKOFER, KH
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK,
1976,
283
: 147
-
153